Report No. UT-22.09

LONG-RANGE URBAN AIR MOBILITY LAND-USE PLANNING FOR VERTIPORTS

Prepared For:

Utah Department of Transportation Research & Innovation Division

Submitted By:

Utah State University Department of Landscape Architecture and Environmental Planning

Authored By:

Katelynn Hall Tayli Hillyard Keunhyun Park, Ph.D. (Co-Investigator) Brent Chamberlain, Ph.D. (Principal Investigator)

Draft Final Report June 2022

501 South 27

DISCLAIMER

The authors alone are responsible for the preparation and accuracy of the information, data, analysis, discussions, recommendations, and conclusions presented herein. The contents do not necessarily reflect the views, opinions, endorsements, or policies of the Utah Department of Transportation or the U.S. Department of Transportation. The Utah Department of Transportation makes no representation or warranty of any kind, and assumes no liability therefore.

ACKNOWLEDGMENTS

The authors acknowledge the Utah Department of Transportation (UDOT) for funding this research, and the following individuals from UDOT on the Technical Advisory Committee for helping to guide the research:

- Utah Department of Transportation: Clint Harper, Paul Wheeler, Paul Damron, Kevin Nichol, Jay Aguilar, Angelo Papastamos, Lance Soffe, Jared Essleman
- Wasatch Front Research Council: Nikki Navarro
- University of Utah: Reed Ewing
- Utah Governor Office of Economic Opportunity: Chanel Flores
- Utah Economic Development Corporation: Utah Valda Yaremenko, Colby Cooley
- Aggie Air: Andreas Wesseman, Cal Coopmans

TECHNICAL REPORT ABSTRACT

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
UT- ÎX.XX N/A		N/A		
4. Title and Subtitle	5. Report Date			
Long-Range Urban Air Mobility La	nd-Use Planning for Vertiports	December 2021		
	6. Performing Organization Code			
7. Author(s)		8. Performing Organization Report No.		
Katelynn Hall, Tayli Hillyard, Keunhyun Par	rk, Ph.D., Brent Chamberlain, Ph.D.			
9. Performing Organization Name and Addre	255	10. Work Unit No.		
Utah State University		5H0, 8RD (PM will provide)		
Department of Landscape Architect 4005 Old Main Hill	ure and Environmental Planning	11. Contract or Grant No.13 (PM will provide)		
Logan, UT 84321				
12. Sponsoring Agency Name and A	Address	13. Type of Report & Period Covered		
Utah Department of Transportation	Draft			
4501 South 2700 West	Aug 2020 to Feb 2021			
P.O. Box 148410		14. Sponsoring Agency Code		
Salt Lake City, UT 84114-8410		PIC No. (PM will provide)		
15. Supplementary Notes				
	ah Department of Transportation and t	the U.S. Department of Transportation,		
Federal Highway Administration				
16. Abstract) :			
) is a rapidly developing industry that	icts. This project focuses on a vital step		
		pact on the surrounding community. The		
		zation to facilitate discussion of the future		
		atial analysis techniques to determine the		
		Suitability is a theoretical potential for a		
		consisting of five categories: the built		
		l limitations, and community social values		
This report provides details about how these five elements are included in a final suitability map for the region. Feasibility is not considered in this process; neither are land value and access to utility infrastructure which will be				
reasibility is not considered in this	process; neither are land value and acc	cess to utility infrastructure which will be		

elemental for the deployment of UAM infrastructure. Conceptual and procedural frameworks detail the authors' underlying processes used to complete the analyses. Our tools and maps can allow developers and planners to converse about land-use decisions that could influence UAM operations. Further, the geospatial tool is customizable and freely available, allowing communities to adapting for their specific circumstances.

se Case, Suitability	Not restricted. Ava	ailable through:	N/A
		maore mileagin	1 N/ / A
	UDOT Research Division		
	4501 South 2700 V	Vest	
	P.O. Box 148410		
	Salt Lake City, UT	84114-8410	
0. Security Classification	21. No. of Pages	22. Price	
of this page)	73	N/A	
Inclassified			
)	f this page)	P.O. Box 148410 Salt Lake City, UT www.udot.utah.go D. Security Classification f this page) 73	Salt Lake City, UT 84114-8410 www.udot.utah.gov/go/research 0. Security Classification f this page) 21. No. of Pages 73 22. Price N/A

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
PREFACE	
1.0 INTRODUCTION	
1.1 Problem Statement	12
1.2 Objectives	
1.3 Scope	13
1.4 Outline of Report	14
2.0 FRAMEWORK DEVELOPMENT AND SPATIAL CRITERIA	
2.1 Overview	15
2.2 Conceptual Framework	15
2.2.1 Built Environment	
2.2.2 Natural Environment	
2.2.3 Regulatory Requirements	
2.2.4 Technological	
2.2.5 Value Based	
2.3 Procedural Framework	
2.4 Spatial Criteria	
3.0 GEOSPATIAL MODELS	
3.1 Capability	
3.2 Suitability	
3.3 Parcel Suitability	27
4.0 DASHBOARD AND VISUALIZATIONS	
4.1 Overview	
4.2 Capability Maps	
4.3 Suitability Maps	
4.4 Parcel Suitability Maps	
4.5 Parcel-level Suitability Statistics	41
4.6 Focus Area Analyses	
4.6.1 Vacant Parcels	

4.6.2 WFRC Centers	
4.6.3 Transportation Planning	
4.6.4 Publicly Owned Parcels	
4.6.5 Equity Focus Areas	53
4.6.6 Residential Areas	55
4.6.7 Commercial & Industrial Areas	
5.0 CONCLUSIONS	59
5.1 Summary	59
5.2 Limitations and Challenges	62
6.0 REFERENCES	
7.0 APPENDIX A: Geospatial Database	
7.1 Introduction	65
7.1.1 Data Sources	
7.1.2 Data Organization	
7.1.3 Data Manipulation	
8.0 APPENDIX B: Spatial Criteria and Variables	

LIST OF TABLES

Table 3.1 Capability Criterion	24
Table 3.2 Suitability Criterion	26
Table 4.1 Parcels Suitability and Capacity	43
Table 3.2 Parcel availability by suitability and capacity classifications	46
Table 3.3 Parcel availability by suitability and capacity classifications	48
Table 3.4 Parcel availability by suitability and capacity classifications	50
Table 3.5 Parcel availability by suitability and capacity classifications	52
Table 3.6 Parcel availability by suitability and capacity classifications	54
Table 3.7 Parcel availability by suitability and capacity classifications	56
Table 3.8 Parcel availability by suitability and capacity classifications	58
Table 7.1 Data Dictionary Example Table	67

LIST OF FIGURES

Figure 2-1 Conceptual Framework Diagram
Figure 2-2 Procedural Framework Diagram
Figure 2-3 Field
Figure 2-4 Field Buffer
Figure 2-5 Delayed Buffer
Figure 3-1 Capability & Suitability Comparison
Figure 4-1: Sample Area Map
Figure 4-2: The capability analysis for the entire WFRC
Figure 4-3: The capability analysis for Sugarhouse
Figure 4-4: The capability analysis for Ogden
Figure 4-5: The capability analysis for Layton
Figure 4-6: The suitability analysis for Sugarhouse
Figure 4-7: The suitability analysis for Layton
Figure 4-8: The suitability analysis for Ogden
Figure 4-9: The parcel analysis for Sugarhouse
Figure 4-10: The parcel analysis for Layton
Figure 4-11: The parcel analysis for Ogden
Figure 4-12: Breakdown of all parcels by suitability42
Figure 4-13: A breakdown of all parcels by suitability and capacity
Figure 4-14 A breakdown of all vacant parcels by suitability and capacity45
Figure 4-15 Suitability of vacant parcels
Figure 4-16 A breakdown of all WFRC center parcels by suitability and capacity
Figure 4-17 Suitability of parcels in WFRC centers
Figure 4-18 A breakdown of all parcels near transportation projects by suitability and capacity.49
Figure 4-19 Suitability of parcels near a planned transportation project
Figure 4-20 A breakdown of all publicly owned parcels by suitability and capacity51
Figure 4-21 Suitability of publicly owned parcels
Figure 4-22 A breakdown of all WFRC Equity Focus Area parcels by suitability and capacity53
Figure 4-23 Suitability of equity focus areas

Figure 4-24 A breakdown of all residential parcels by suitability and capacity	.55
Figure 4-25 Suitability of residential parcels	.56
Figure 4-26 A breakdown of all commercial and industrial parcels by suitability and capacity	.57
Figure 4-27 Suitability of commercial & industrial parcels	.58
Figure 7-1 ESRI Modelbuilder to Project All Data	.68
Figure 7-2 Modelbuilder to Clip All Data	.69
Figure 7-3 Organized Geodatabase Folders	.69

UNIT CONVERSION FACTORS

		METRIC) CONVE	RSION FACTORS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
. 2		AREA		2
in ²	square inches	645.2	square millimeters	mm²
ft ²	square feet	0.093	square meters	m² m²
yd ²	square yard	0.836 0.405	square meters	
ac mi ²	acres square miles	2.59	hectares square kilometers	ha km²
	square miles		square kilometers	NIII
61	fluid and a second and	VOLUME		
floz	fluid ounces	29.57	milliliters	mL
gal ft ³	gallons	3.785	liters	L m ³
yd ³	cubic feet	0.028 0.765	cubic meters cubic meters	m ³
yu	cubic yards	olumes greater than 1000 L shal		
	NOTE. V	MASS		
07	0110005	28.35	grams	a
oz Ib	ounces	28.35	grams kilograms	g ka
T	pounds short tons (2000 lb)	0.434	kilograms megagrams (or "metric ton")	kg Mg (or "t")
	· · · · · · · · · · · · · · · · · · ·			ivig (or t)
0-		EMPERATURE (exact de	o ,	00
°F	Fahrenheit	5 (F-32)/9	Celsius	°C
		or (F-32)/1.8		
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx 2
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²
		RCE and PRESSURE or		
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIN	IATE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm²	square millimeters	0.0016	square inches	in ²
m ²	square meters	10.764	square feet	ft ²
m²	square meters	1.195	square yards	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliters	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m³	cubic meters	35.314	cubic feet	ft ³
m³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т
		EMPERATURE (exact de	egrees)	
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
	lux	0.0929	foot-candles	fc
X			foot-Lamberts	fl
x cd/m²	candela/m ²	0.2919		
x cd/m ²	candela/m ²	0.2919 RCE and PRESSURE or	STRESS	
x cd/m²	candela/m ²			lbf lbf/in ²

*SI is the symbol for the International System of Units. (Adapted from FHWA report template, Revised March 2003)

LIST OF ACRONYMS AND DEFINITIONS

UGRC	Utah Geospatial Resource Center
FAA	Federal Aviation Administration
FHWA	Federal Highway Administration
UAS	Uncrewed Aircraft System
sUAS	Uncrewed Aircraft System
UAV	Uncrewed Aerial Vehicle
UDOT	Utah Department of Transportation
WFRC	Wasatch Front Regional Council

Conceptual Framework Definitions (refer to Section 2.2) Dimension: One the main five categories used to sort variables Category: One of eighteen subcategories to further sort variables. Vertiport: A facility designed to be used by UAV for landings and take offs Use Case: The task that UAV will fulfill

EXECUTIVE SUMMARY

Urban Air Mobility (UAM) is a rapidly developing industry that highlights unique planning opportunities and a shift in the delivery mode of services and products. This project focuses on a vital step towards the integration of UAM: the siting of vertiports. The identification of potentially suitable sites offers a spatially explicit visualization to facilitate discussion of the future of UAM-focused infrastructure. While early in its development, our tools and maps can allow developers and planners to converse about land-use decisions that could influence UAM operations. Further, the geospatial tool is customizable and freely available, allowing communities to adapting for their specific circumstances.

This project uses a combination of geospatial analysis techniques to determine the suitability of sites across the Wasatch Front for vertiport development. Suitability is a theoretical potential for a given area (or parcel) to support vertiport activities. We define suitability consisting of five categories: the built environment, natural environment, regulatory requirements, technological limitations, and community social values. This report provides details about how these five elements are included in a final suitability map for the region. Additionally, a capability analyses, is supplied to quickly determine if a site can host a vertiport without restrictions such as lakes, roadways, or areas of safety concern. The primary output, the suitability analyses, introduces nuance to the capability by layering scored zones tied to community elements. These scores are split into five categories. These five categories consist of a variety of elements, each element is thus assigned a suitable score of: -1, 0, or 1. All elements are combined and summed for final suitability for every capable parcel within the region. A full table of the spatial criterion for both analyses is viable in appendix B. Due to the large size of the region, example sites are selected to display the analyses generated. Capability, suitability, and parcel suitability maps are shown for Sugarhouse, Salt Lake City, Ogden, and Layton. A full explorable map and map tour are available on the story map developed for this project¹. Data can be downloaded through the Visualization, Instrumentation and Virtual Interactive Design Laboratory website² of Utah State University.

¹ https://storymaps.arcgis.com/stories/a5e89074c5f74cbb94e3f14850b694c2

² https://laep.usu.edu/vivid/projects/03_faculty/expertise/urban_air_landuse

PREFACE

This report is being delivered as part of the fulfillment from the UDOT UTRAC project "Long-Range Urban Air Mobility Land-Use Planning for Vertiports" funded from 2020-2022. The work produced in this document is also related to co-author Hall's Masters Thesis (to be published in summer 2022), with shared context, and some overlap with results and text.

All analyses and results are derived from data downloaded in the fall of 2021.

1.0 INTRODUCTION

1.1 Problem Statement

Urban Air Mobility (UAM) is a rapidly developing industry that highlights tremendous growth opportunities and a major shift in the delivery mode of services and products. UAM encompasses multiple benefits and use-cases: improving emergency and natural disaster response, facilitating commercial package delivery, and in the long-run, integrating with existing transportation and commuter systems (e.g., air taxies). For this project, the use-case is on commercial to residential package delivery via drones, with a specific focus on the land-use implications UAS facilitated delivery. This is one of the first publicly funded project that aims to identify planning implications of this transportation land-use issue. Currently, there is no comprehensive understanding of the ramifications of our use-case on existing transportation, land-use, and other infrastructure, making this project unique and ground-breaking.

Integration of UAM requires the development of specific infrastructure known as vertiports, centers the facilitate ground-based interaction with Uncrewed Aerial Systems (UAS). The driving question for this project is - where should vertiports be located? Currently, there is no specific zoning designation for UAM. The existing aeronautic infrastructure has traditionally been oriented toward larger aircraft and for servicing macro-scale industrial and commercial needs. UAM integration represents a shift in scale to micro-level, highly distributed infrastructure with substantially different needs than traditional air-based transportation. These differences include access to electrical grids, higher density of vehicles, reduced land use, sensitivity to microclimate, and concerns over security and safety where vertiports need to be located within developed areas (e.g., residential, commercial, public, industrial). While much research has focused on the optimization and logistics of UAM-based transportation, this project aims to address social aspects of UAM-based transportation through the lens of land use planning.

12

1.2 Objectives

This research project has two objectives. The first objective is to develop a structured framework to characterize the legal, infrastructural, and logistical demands and supplies that can be used to visualize ideal locations of vertiports. The second objective of this research project is to develop a geospatial tool and related maps to enable planners to identify a range of suitability for UAM sites, as well as information that explains implications, opportunities, and challenges about implementing vertiports.

1.3 Scope

The proposed research is the first of any open-source geospatial model that will evaluate the role that UAM has on land-use planning, existing infrastructure and transportation networks. Our research will provide government agencies in Utah (e.g., UDOT, MPOs, cities and counties) with a map to facilitate discussions about long-term UAM planning issues, as well as to promote the research issues and gaps in the literature surrounding UAM-based land-use planning. The regional scope of the project will be within the Wasatch Front (Davis, Salt Lake, Weber, and Box Elder (partially for the Brigham City area) counties), the primary regions managed by the Wasatch Front Regional Council (WFRC) Metropolitan Planning Organization (MPO).

While there are many potential uses for UAS, a singular use case was determined for the scope of this project. Use cases were compared by their societal need, the timeliness of the need, the availability supporting literature, and the need for urban planning. Emergency management, for example, has a high societal need but also typically uses pop-up temporary take-off and landing zones.

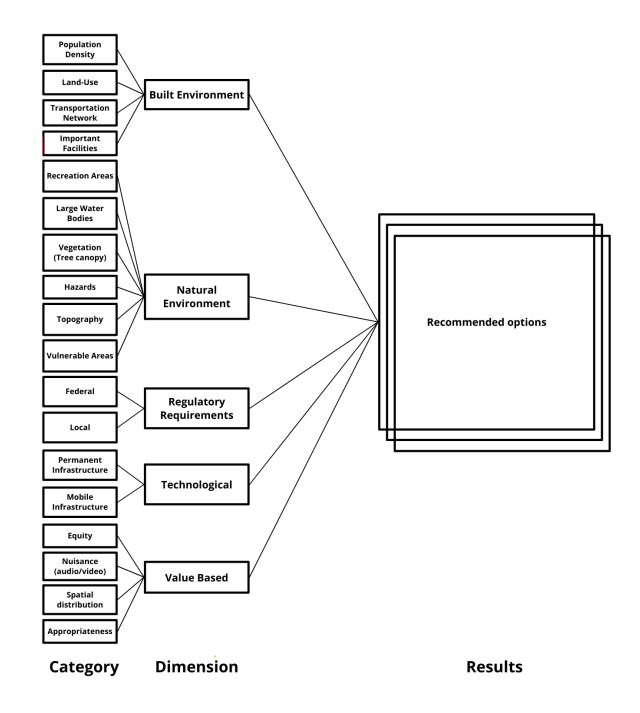
In the creation of this model, certain assumptions were made. Current infrastructure such as existing structures or access to utilities is largely ignored. Under advisement from the TAC, current flight ceilings under part 107 that could restrict the integration of UAV are also largely ignored. Certain community elements such as schools, hospitals, and urgent care centers are removed in the interest of public safety. This model is targeted at vertiport locations serving vehicles capable of vertical take off and landing (VTOL).

13

Other industries such as healthcare may establish their own UAS networks with private vertiports. For the safety and security of other industries certain areas, such as hospitals are limited. This model exclusively plans for vertiports in residential areas for the delivery of small goods such as food, medicine, and small packages. The results of this study do not recommend or eliminate locations of other vertiport use types. It is important to consider the hierarchy of uses when planning a vertiport, however current conditions and planning climates do not allow for this level of analysis.

1.4 Outline of Report

Chapter 2 details the underlying concepts and procedures that are combined to create the analyses in this project. Chapter 3 explains the individual analyses in-depth to the specific details within in the capability and suitability analyses. Chapter 4 shows the results produced from the prior stages. Chapter 5 concludes the report with the final summaries, recommendations, and implementation strategies. Appendix A details the processes used to find, store, and prepare all data used in this analysis. Appendix B holds all the individual suitability and capability criterion, and key generated datasets.


2.0 FRAMEWORK DEVELOPMENT AND SPATIAL CRITERIA

2.1 Overview

This report focuses on the development of a framework for evaluating the placement and implications of vertiports in communities. This section highlights two different frameworks used in this study: the conceptual framework and process framework. The conceptual framework identifies the key dimensions and categories used to identify suitable locations for vertiports. The process framework identifies the technical steps used to accomplish the results.

2.2 Conceptual Framework

The conceptual framework details the underlying processes used in the selection of spatial criteria, as well as recommended aspects to consider in future iteration or adaptations. The framework shown in Figure 2-1 guides the development towards the defined goal and organizes research tasks and goals (Jabareen, 2009). This framework operates under the assumption that the area and case for which small Uncrewed Aerial Systems (sUAS) are being used have already been determined. It does not include the process used by the researchers to achieve the results. Instead, it displays the broad concepts and their interplay to create the results and guides the development towards the defined goal and organizes research tasks and goals. For the optimal siting of vertiports to directly support the use of sUAS for deliveries in residential centers, this project identifies potential subsets of existing community elements that may affect sUAS and what sUAS itself affects, considering many distinct aspects of existing urban and rural fabrics. Then, dimensions were determined through the similarity of the potential subsets. This framework includes the clustered variable categories found in a community that all contribute to a site's suitability for vertiport placement. These dimensions are built environment, natural environment, regulatory requirements, technology, and value-based dimensions. The dimensions were created through a review of literature, advice from the TAC members, team conversations, and iterative processes.

Figure 2-1 Conceptual Framework Diagram

These dimensions are **natural environment**, **regulatory requirements**, **built environment**, **technology**, and **value-based** dimensions.

2.2.1 Built Environment

The built environment examines existing physical elements constructed for societal use. This dimension includes the categories **land usage, transportation networks, important facilities, and population density**. Land usage accounts for the current use of the land such as commercial and residential areas or municipal parks. This also accounts for buffers around sensitive areas. Transportation networks encompass all existing or planned roadways, sidewalks, air traffic patterns and the like. Important facilities include all areas we would like to encourage or exclude, such as schools, libraries, and prisons. Population density affects the size or density of proposed vertiports.

2.2.2 Natural Environment

Natural environment recognizes naturally occurring natural environment hazards that may pose a risk to UAS, or vice versa. It includes **recreational areas**, **large water bodies**, **vegetations**, **environmental hazards**, **topography**, **and vulnerable areas**. Extreme topography would provide unnecessary difficulty and expanded flight times that are not necessary for our use case. Dense vegetation makes piloting and landing UAS difficult. Large water bodies present sinking hazards towards UAS. These all can limit UAS development and usage. UAS in turn can be seen as a risk to recreation areas and vulnerable environments.

2.2.3 Regulatory Requirements

Regulatory requirements address all possible regulatory or legal bodies with potential control or limitations over UAS in the project area. For the purposes of this study, they have been divided into **air**, **land**, **and water based regulations**. These can be large federal bodies such as the FAA, local government controls, nearby military bases, or airports. This study includes all potential regulations for ground or air. All legal requirements will take precedence in this study.

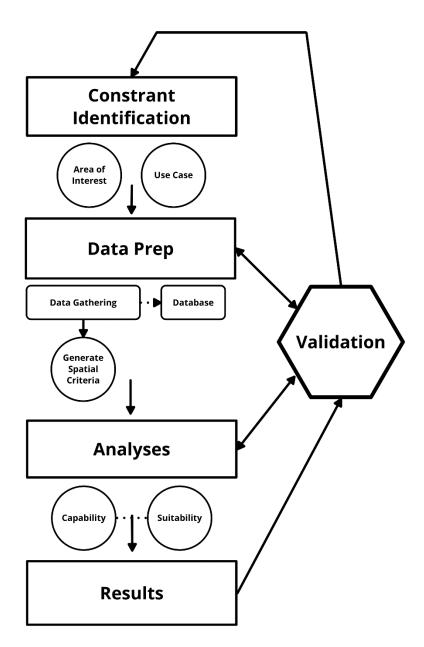
2.2.4 Technological

Technological encompasses the needs and limitations of UAS under current technological conditions and established infrastructure. Flight range, speed, and time are all

factors that can be easily changed through innovation or outside factors. This study will be done at typically expected UAS capacity at the time of the study, but the authors recognize that these rulesets will change.

2.2.5 Value Based

These factors are all based on normative values and include **social acceptance**, **equity**, **audible and visual nuisance potential**, **prioritization**, and **safety**. As a disruptive technology that have market needs as a major driving factor, UAS have the potential to primarily be integrated in wealthy areas. By placing equity as a prime driver, we instead bring an equity focused resource to communities. Walkability describes the distance to and potential hazards to the vertiport on foot. Walkability directly impacts the success of sustainable residential community centers. UAS also have the potential to be a visual and audible nuisance.


2.3 Procedural Framework

The procedural framework (Figure 2-2) illustrates the process used by researchers for the duration of this project. The model begins by with **constraint identification** that defines the area of interest and use case. The area of interest defines the geographical boundaries the model will operate within. All bodies with regulatory power need to be identified in this region. The use case also must be identified before proceeding to the next stage of the model. The use case describes to a task that the sUAS will be completing. This purpose can affect the size, number of, and needs of the vertiports in the area of interest.

The use case is based on four distinct factors: timeliness, market demand, planning need, and technological ability. Timeliness addresses the legal and cultural constraints at the time. Market demand examines who will be using sUAS, and how popular it will be. Planning needs considers whether this use case will require the need of urban planning. Technological ability determines if the current state of sUAS technology can support the use case in the research area.

Once the area of interest and use case are determined, the constraints used by the model must be identified and delineated in the data prep stage. Here data representing a variety of community elements are first gathered, organized into a database, and combined with geospatially explicit rules in ArcGIS Pro to create the spatial criteria under each category and

dimension grouping. These groupings are aimed to capture both how the sUAS may affect an environment, or how an environment can affect sUAS. A single community element can appear in more than one criterion, take for example how built-environment and value-based rulesets will view elements such as schools differently. Built environment sees an already developed community center thoroughly distributed throughout communities that has plenty of open space. Value-based recognizes the distraction and safety risks, as well as the site being generally inappropriate for use. The spatial criterion creation and the analysis phase are further explained ahead. At every phase of this process, and once the final results are generated the map is reviewed and adjusted as needed to ensure the correct balance and weighting is maintained. These spatial criteria will be provided in an appendix B.

Figure 2-2 – Procedural Framework Diagram

2.4 Spatial Criteria

Before any analysis can be created, all potentially appliable data was found and saved. This includes geographically linked data regarding community elements such as existing land uses and types, community amenities, historical sites, natural hazards, water bodies, etc. All data was found online through sources such as the UGRC, WFRC data services, and individually from each county, all of the data besides parcel ownership is also open access and freely available. Once found, the metadata for each set was then saved to a data dictionary spreadsheet. The data was then prepped by clipping it to the site, and ensuring it was all in the same projection. All spatial criteria are stored in a spatial criteria library, similar to the data dictionary. The following diagrams illustrate some of the spatial typology used to delineate rulesets for a variety of different spatial analyses. For each of these figures white represents the area to be scored.

Figure 2-3 Field

Here is when the area of the spatial element is used for the scoring area.

Figure 2-4 Field Buffer

A field buffer expands the section area while keeping the original area. This is used for areas that have a larger impact than just their boundary.

Figure 2-5 Delayed Buffer

This rule is used for areas that are popular but may have other concerns such as a school. This rule selects the area surrounding an element without including it.

3.0 GEOSPATIAL MODELS

A geospatial model is a pre-programmed GIS process we created in ESRI's Modelbuilder. This process applies various analyses to spatially explicit data to delineate new relationships and patterns. For the purposes of this study, we use geospatial modeling to establish relationships between community elements and sUAS using positive and negative integer values. In this project both capability models and suitability models are implemented to determine the appropriateness of the site (Figure 3-1).

When the suitability and capability models are combined the final dataset creates a scoring for every capable location in the Wasatch Front. Specific maps that simplify or highlight information for planning purposes as requested by the TAC, and a shareable toolbox for other planners to use in the future are also available. This section provide further details of how the two different analyses were produced. Given the spatial extent and complexity of the maps, the results in this report are simplified (while a full web version is available), showing the average suitability of each parcel.

Capability

- Yes/No: Can a UAV land here?
- Does not consider feasibility of that landing
- Used to quickly rule out areas
- Exceptions for safety and higher priority uses

Suitability

- Uses community elements through multiples lenses such as value based or regulatory requirements to create spatially explicit rules
- Uses a scalable positive-negative scoring system to create final suitability map

Figure 3-1 Capability & Suitability Comparison

3.1 Capability

The first of two analysis models created for this modeling project is known as capability. Capability is used to quickly rule out areas that cannot be used for vertiport development or areas of safety concern or higher priority usage. The capability analysis map was developed by finding and identifying all community elements hostile to vertiport integration such as roadways, lakes, and steep slopes. Some capability decisions are made for safety, such as the exclusion of all school grounds, and to give way to higher priority uses by excluding hospitals from vertiport capability. These are removed either by land ownership in the instance of built facilities, the elements' own boundaries (e.g. lakes, or river buffers) and roadways buffers. The capability analysis uses the following equation:

$$capability_{pixel} = \left(\bigcup_{i=1}^{n} C_{area_i}\right) * \left(\prod_{j=1}^{m} C_{pixel_j}\right)$$

Where: pixel = a single raster pixel, C = criteria variable (e.g. spatial data layers shown in Table 3.1), n = number of criteria, area = vector boundary, i,j = starting criteria, Further, where the union of all vector based capable areas multiplied by the product of all raster based capability creates the final capability analysis.

Community Element	Rule	Selector
Conservation Easements	Field	
Electrical Lines	Buffer	50ft
Dams	Buffer	50ft
Railroads	Buffer	50ft
Streams	Buffer	15ft
Roads with speed limit >=65	Buffer	100ft
Roads with speed limit <65	Buffer	50ft
Minor Water	Buffer	50ft
Major Water	Buffer	100ft
Land Ownership BLM DNR DOD SITLA USFS UFWS	Field	
Solid Waste Facilities	Field	
Hospitals	Field	
Child Care Facilities	Field	
Power Plants	Field	

Table 3.1 Capability Criterion

Community Element	Rule	Selector
Private Schools	Field	
Public Schools	Field	
Correctional Facilities	Buffer	500ft
Urgent Care	Field	
Airport	Field	
Slope	Field	10%

3.2 Suitability

The suitability analysis introduces nuance into the decision-making process when identifying vertiport locations by looking at the compatibility of neighboring community elements. The suitability analysis is created by layering community elements and their connected score, tallying the final scores to create the complete suitability analysis.

This is completed by pairing each community element with each dimension and determining if that combination has an effect on vertiport suitability. For example, the location of an apartment complex currently has no impact on the regulatory side of sUAS. The location of a cemetery does have an impact on the value-based dimension. If the combination is found to have an impact the pairing, then moves forward and is assigned a spatially explicit rule, creating a spatial criterion. In this model, that rule is either a field, straight buffer, or a delayed buffer. A field is the exact shape of the element in question with no extension, or the parcel ownership associated with the element. A straight buffer holds a single value across a certain diameter surrounding the community element in question. A delayed buffer is used when the element itself is incompatible with vertiport integration but has other properties that support a vertiport in proximity, such as a school which is deemed in capable due to safety but is also a popular and commonly visited community element. For example, areas directly surrounding a school hold a lower value, but immediate connections are given a higher value.

Rules are then organized by their respective dimensions, either built environment, natural environment, regulatory requirements, or value based. The technological factor is not compared at this time because there is no way to know which specific sUAS will be used, or the infrastructural needs (amount of electricity, access to water, etc.) of the vertiport. Future iterations may include this when such data becomes available. The score for each dimension is tallied with the respective spatial criteria and combined into a single GIS layer. Each dimension

25

layer is then compiled, and the final score calculated. All GIS process are ran through and documented by Modelbuilder in ArcGIS Pro. The suitability analysis uses the following equation.

$$suitability_{pixel} = \left(\sum_{i=1}^{n} S_{i} * W_{i}\right) * capability_{pixel}$$

Where S = spatial variable (see Table 3.2), W = weight, n = the total number of S, and i = rating (value, etc.)

Community Element	Dimension	Rule	Score	Criteria
Historic District	Built Others	Field	-1	
Land Ownership	Built Others	Selected Field	1	Privately Owned Land
	Natural Environment	Buffer	-1	Parks and Recreation
	Natural Environment	Buffer	-1	State Parks and Recreation
	Natural Environment	Buffer	-1	BLM, DNR, USFS, USFWS
Parks	Built Others	Field	1	
Frontrunner Stations	Built Others	Buffer	1	
Trax Stations	Built Others	Buffer	1	
Law Enforcement	Built Point	Buffer	-1	
	Value-Based	Field Buffer	-1	
Libraries	Built Point	Buffer	1	
	Value-Based	Field Buffer	1	
Community Services	Built Point	Buffer	1	
	Value-Based	Field Buffer	1	
Community Centers	Built Point	Buffer	1	
	Value-Based	Field Buffer	1	
Cemeteries	Built Point	Buffer	-1	
	Value-Based	Field Buffer	-1	
Retail Centers	Built Point	Buffer	1	
	Value-Based	Field Buffer	1	
Public Schools	Built Point	Buffer	1	
Private Schools	Built Point	Buffer	1	
Grocery Stores	Built Point	Buffer	1	
	Value-Based	Field Buffer	1	
Fire Stations	Built Point	Buffer	-1	
	Value-Based	Field Buffer	-1	
Child Care	Built Point	Buffer	1	

Table 3.2 Suitability Criterion

Community Element	Dimension	Rule	Score	Criteria
	Value-Based	Field Buffer	-1	
Churches	Built Point	Buffer	-1	
	Value-Based	Field Buffer	-1	
Correctional Facilities	Built Point	Buffer	-1	
	Value-Based	Field Buffer	-1	
Urgent Care Centers	Built Point	Buffer	-1	
Streams	Natural Environment	Buffer	-1	Minor
		Buffer	-1	Major
Floodplains	Natural Environment	Field	-1	A, Ae, Ve
Lakes	Natural Environment	Buffer	-1	Not Internment
Conservation Easements	Natural Environment	Buffer	-1	
Wetlands	Natural Environment	Buffer	-1	
Dams	Natural Environment	Buffer	-1	
Airports	Regulatory	Buffer	-1	
Hospitals	Natural Environment	Buffer	-1	
Monuments And Markers	Value-Based	Buffer	-1	

3.3Parcel Suitability

To better optimize the map to be respectful of parcel and jurisdictional boundaries, the resulting suitability scores were simplified in a parcel suitability analysis. This analysis is based on the following equation:

$$suitability_{parcel} = median(suitability_{pixel})$$

Where suitability-parcel is the median of all suitable pixels in the bounds of a parcel ignoring null values.

Parcels with a score of <1 are considered unsuitable. Parcels with a score of 0-1 are deemed neutral, as nothing sways the site towards or away from vertiport development. Parcels with a score of two are classified as possible, as they are suitable for development, but not a strong contender. A score of three or four are suitable, and any value over four is highly suitable.

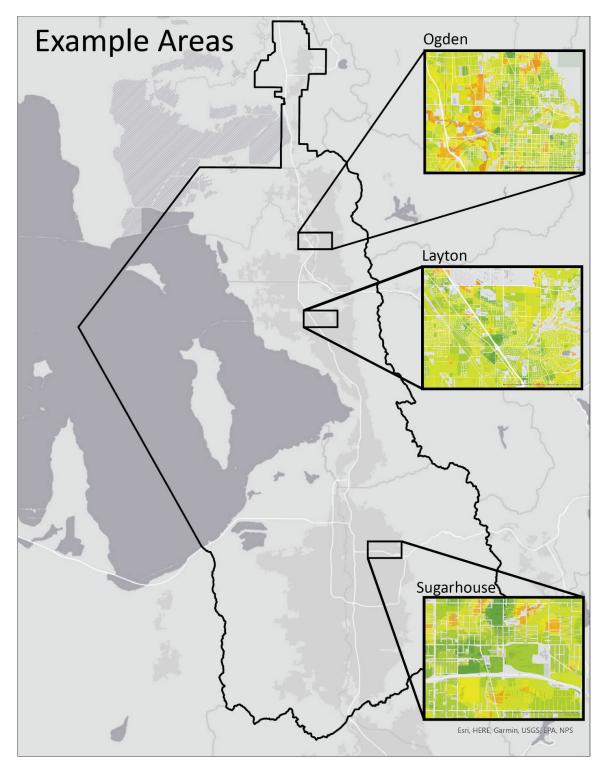
Still, these are relative values and not to be used without further investigation of the feasibility of the site.

The capacity of a vertiport is based on the safety buffer per landing site, site amenities, and walkways when needed. As such the equation is:

$$(a^2)x + (b * c)y + (5 * ax) =$$
minimum square footage

Where x = number of vertiports, y = number of amenity boxes, a = 5x the largest recommended vehicle width, b and c both equal the dimensions of an amenity box, and the final step is only used when a walkway is desired. A minimum vertiport size was determined using a safety buffer of 2.5 vehicle lengths, assuming a maximum of a 5' wide sUAS. In the model, vertiport capacity is sorted by minimum number of vertiports the site can hold. Such capacities are sorted into categories based on the minimum number of potential vertiports based on the area of the site. These classifications include inadequate, single, double, medium, and large. Inadequate parcels are less than 750 sq feet, and sometimes represented as parcels segments to identify ownership in a multi-story building. Single vertiport slots are between 751 and 1499 square feet, enough room to hold a single vertiport and some amenities as needed. Double vertiports are between 1500 and 2874 square feet, enough room to hold two vertiports and a walkway between them. Medium slots can hold a minimum of four vertiports, adequate walkways, and extra space for amenities such as benches, trash cans, or bus shelters. These areas are at most 5624 square feet in area. As such capacity numbers would indicate a high level of community use, some amenities are recommended to be included at the area. Large vertiport classifications indicate areas that can hold a minimum of 8 vertiports, adequate walkways, and amenities on-site. Such parcels could also include other site uses, such as storefronts, parks, or

other large community elements. Due to variations in site dimensions, these are not guaranteed capacity numbers at each site, and should be used only for guidance, not final selection.


4.0 DASHBOARD AND VISUALIZATIONS

Note: a story map has been developed in conjunction with this report to further describe and show the analyses. It can be found here: https://storymaps.arcgis.com/stories/a5e89074c5f74cbb94e3f14850b694c2

Note: all analyses and results are derived from data downloaded in the fall of 2021.

4.1 Overview

Due to the large site size, sample areas have been identified to provide imagery across different community types and locations in the Wasatch Front. Locations include: Sugarhouse neighborhood in Salt Lake City, Layton City, and Ogden City. A map highlighting these locations is provided, followed by sample imagery for capability, suitability, and parcel suitability for each site. For capability all areas colored green are deemed capable for the remaining analyses. Both suitability and parcel suitability and shaded using a orange to green scale, with orange being unsuitable and dark green being highly suitable for vertiport development. Suitability and Parcel Suitability have differing color scales, as the value range for parcel suitability is smaller when capability is included, removing the least suitable areas from inclusion.

Figure 4-1: Sample Area Map. Due to large size of the test region, three example areas have been chosen in Ogden, Layton, and the Sugarhouse neighborhood of Salt Lake City. This shows the placement of each sample sites and the final image for each within the boundaries of

4.2 Capability Maps

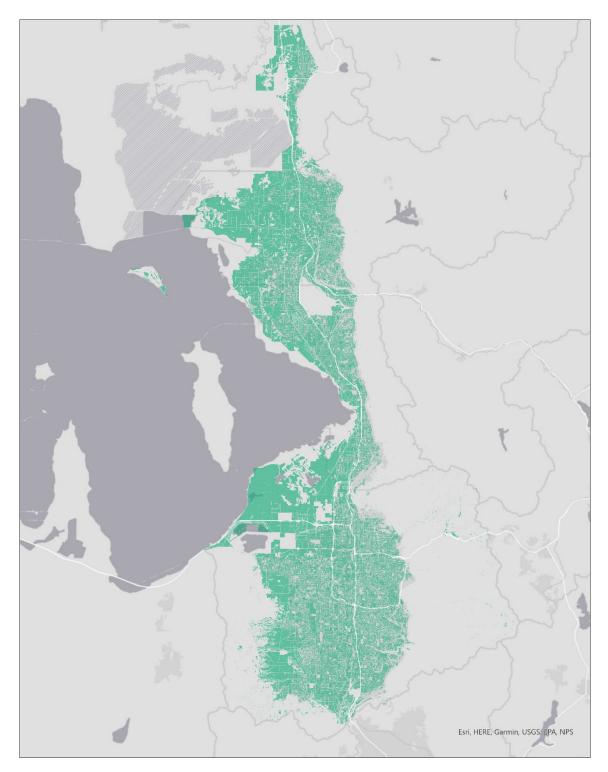


Figure 4-2: The capability analysis for the entire WFRC. All areas that are green are deemed capable.

Figure 4-3: The capability analysis for Sugarhouse. All areas in green are deemed capable. Primary reason for incapability in this area are roadways, schools, and slope surrounding waterbodies.

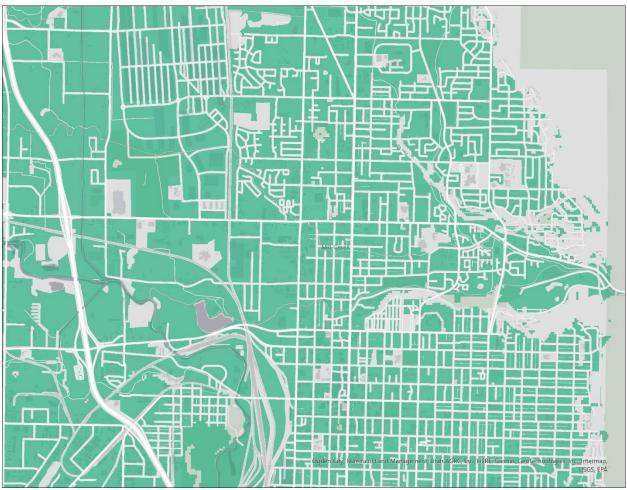
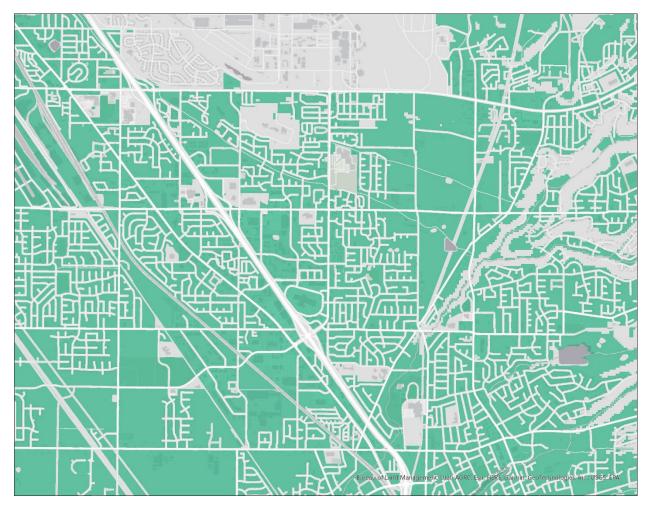



Figure 4-4: The capability analysis for Ogden. All areas in green are deemed capable. In this

areas the primary reason for incapability is roadways, schools, and slope.

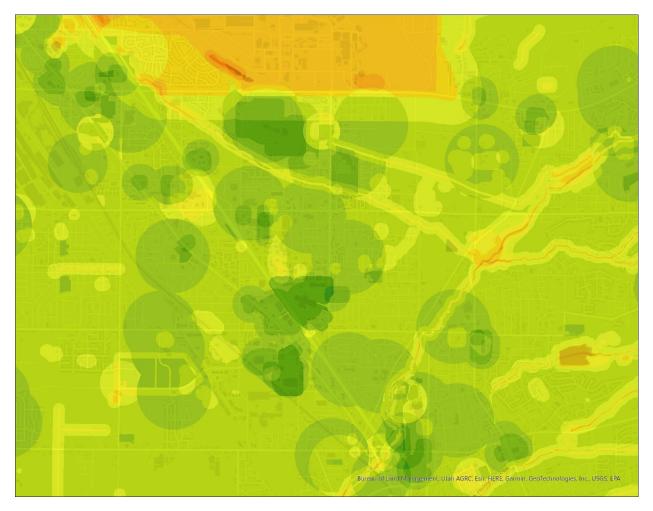


Figure 4-5: The capability analysis for Layton. All areas in green are deemed capable. This areas shares the primary incapability of roadways and slope, but also features Hill Air Force Base at the top of the map.

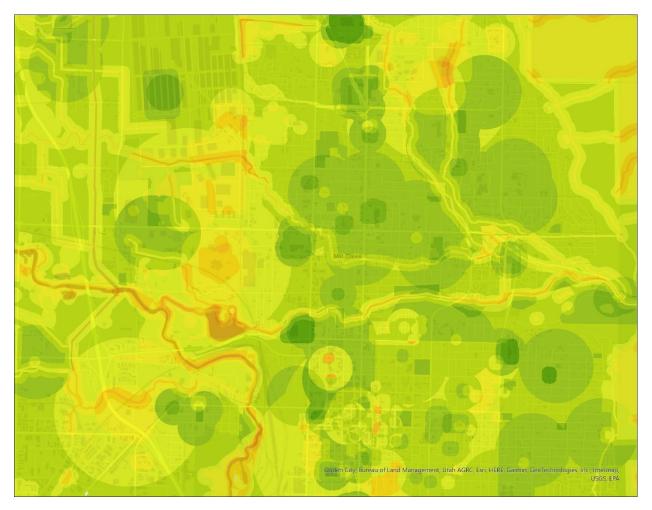

4.3 Suitability Maps

Figure 4-6: The suitability analysis for Sugarhouse. Areas in red have a poor suitability, and green have high suitability. Here we see higher suitability in commercially dense areas and educational centers. Areas of lower suitability are generally due to schools, water features, and some reduced suitability in residential areas.

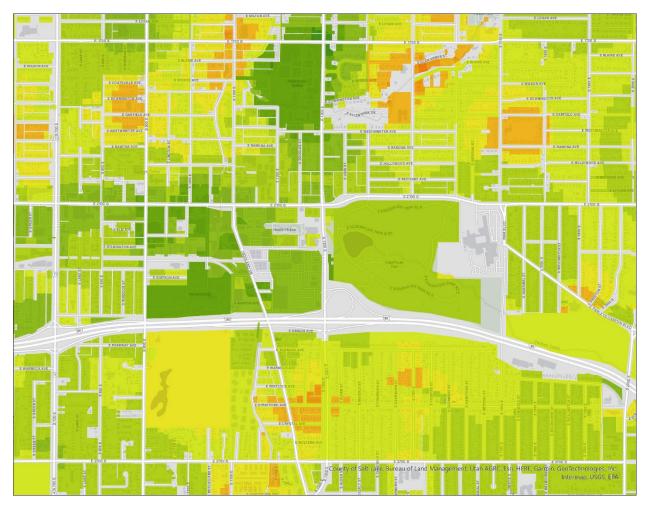


Figure 4-7: The suitability analysis for Layton. Areas in red have a poor suitability, and green have high suitability. This map shows the higher suitability at existing commercial centers, reduced suitability in the surrounding residential areas, and unsuitable at Hill Air Force Base.

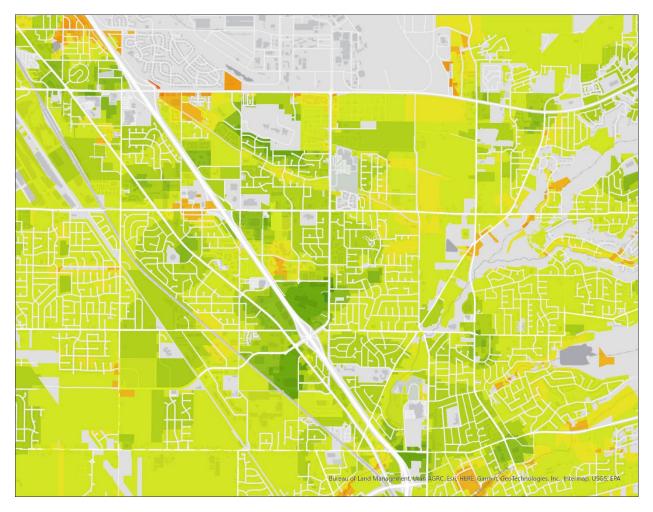


Figure 4-8: The suitability analysis for Ogden. Areas in red have a poor suitability, and green have high suitability. In Ogden the primary reason for reduced suitability is connection to waterways.

4.4 Parcel Suitability Maps

Figure 4-9: The parcel analysis for Sugarhouse. Areas in red have a poor suitability, and green have high suitability. Areas with no color overlay are incapable. The combination of the analyses and simplification into parcel data reduces the range of values, giving areas accurate color range representation. Here we still see a focus on commercial and education centers, with the loss of k-12 school properties, areas of high slope, or parcels that were mostly water. The simplification process does contain loss, so capability must be included in any final analyses.

Figure 4-10: The parcel analysis for Layton. Areas in red have a poor suitability, and green have high suitability. Areas with no color overlay are incapable. Here we see low suitability in residential areas, high suitability in retail centers, and Hill Air Force Base is incapable bounded by lower suitability.

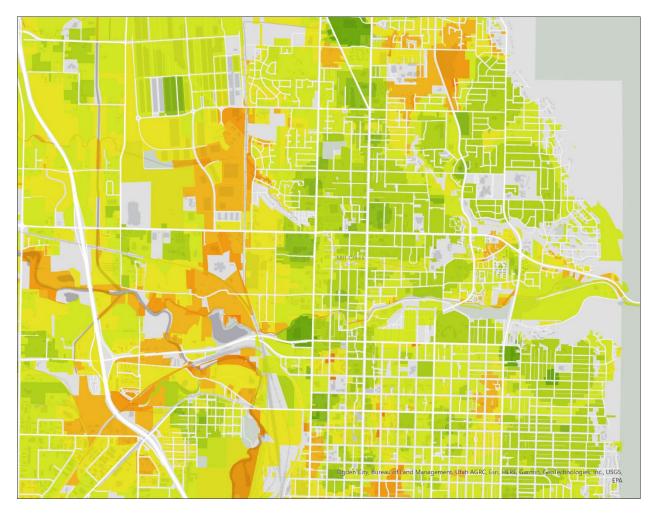


Figure 4-11: The parcel analysis for Ogden. Areas in red have a poor suitability, and green have high suitability. Areas with no color overlay are incapable. In Ogden we see large areas of insuitability near waterways and packets of suitability around community centers such as commercial districts and schools.

4.5 Parcel-level Suitability Statistics

Across the entire site there are 494,312 capable parcels. The figure below shows the number of parcels in each suitability class for the entire site regardless of size class. Over a third of parcels are considered suitable, and nearly half are considered possible with a suitability score of 2. It is very rare to hit high suitability, with a score greater than 4, making up less than 1% of all available parcels.

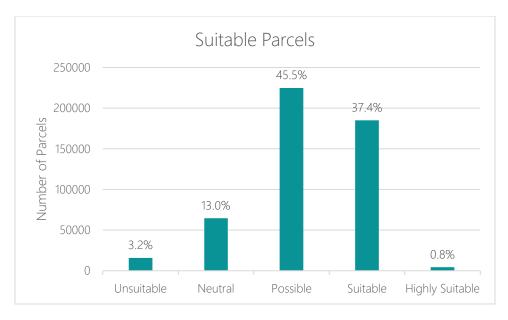


Figure 4-12: Breakdown of all parcels by suitability

The full site analysis encompasses all parcels that have their center within capable areas on the analysis. This includes every capable parcel in the Wasatch Front, regardless of zoning or existing land use. This shows the overall vertiport character of the Wasatch Front. As vertiports are fairly compact compared to other infrastructure, they can easily fold into existing communities. The Wasatch Front has also experienced decades of sprawl-based growth, leading to the majority of parcels being in the large vertiport categorization. Across all size classifications we see a concentration of vertiports on the possible and suitable categories, showing high potential for vertiport generally across the Wasatch Front.

Figure 4-13: A breakdown of all parcels by suitability and capacity

	Full Site						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	1,384	762	652	1,775	11,280		
Neutral 1	5,618	2,837	2,453	5,535	48,086		
Possible 2	9,506	8,644	6,491	16,416	183,652		
Suitable 3-4	10,819	6,240	5,383	14,775	147,745		
Highly Suitable 5+	1,317	164	147	506	2,125		
Total	28,644	18,647	15,126	39,007	392,888		
					494,312		

 Table 4.1 Parcels Suitability and Capacity (unit: number of parcels)

4.6 Focus Area Analyses

Each focus area analysis is provided with a table describing the number of parcels available by suitability and capacity, a chart visualizing that availability, and a suitability map of the selected parcels in Salt Lake City. Focus area analyses were run on vacant parcels, WFRC 2050 centers, parcels proximal to a planned transportation network project, publicly owned parcels, WFRC equity focus areas, residential, and commercial or industrial parcels. Additional data containing the same statistics about every parcel analyzed is also listed.

4.6.1 Vacant Parcels

The parcel map provided by the WFRC labels parcels as vacant in lieu of current zoning status. These parcels were selected from all capable parcels with the vacant classification. The figure below shows a breakdown of suitability across each size classification for all capable vacant parcels. This focus area was selected, as development in vacant parcels is often cheaper, less disruptive, and will bring overall improvement to the community it serves. Vacant parcels of all sizes see peaks in possible and suitable categories, showing good potential for development in these vacant parcels.

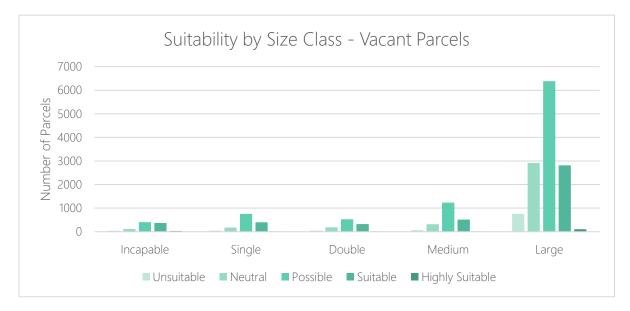


Figure 4-14 A breakdown of all vacant parcels by suitability and capacity.

	Vacant Parcel					
	Inadequate	Single	Double	Medium	Large	
	0	1	2	3-4	5+	
Unsuitable <1	42	43	46	65	750	
Neutral 1	113	172	186	316	2,915	
Possible 2	405	755	528	1,232	6,387	
Suitable 3-4	371	401	324	512	2,812	
Highly						
Suitable 5+	35	9	14	15	110	
Total	966	1,380	1,098	2,140	12,974	
					18,558	

 Table 3.2 Parcel availability by suitability and capacity classifications (unit: number of parcels)

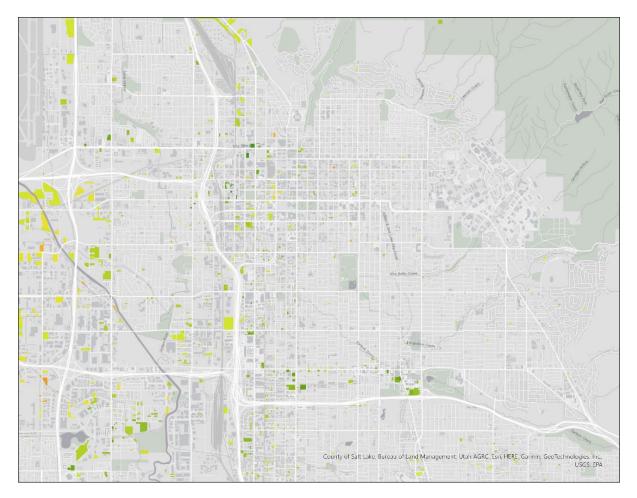


Figure 4-15 Suitability of vacant parcels

4.6.2 WFRC Centers

This focus area selects all capable parcels within the WFRC projected regional centers. These are regional centers visioned in the Wasatch Choice 2050 plan, as created by the WFRC with local partners. Development in such parcels directly supports long range efforts being undertaken by communities at all levels, and directly supports and strengthens such communal centers. Such areas are also expected to be popularly used, and already a part of many people's daily lives reducing the change citizens would need to make to use the vertiport. The figure below shows that in comparison to the other focus areas, WFRC centers have a much higher concentration of smaller vertiport classes, as the areas are largely developing or established urban centers.

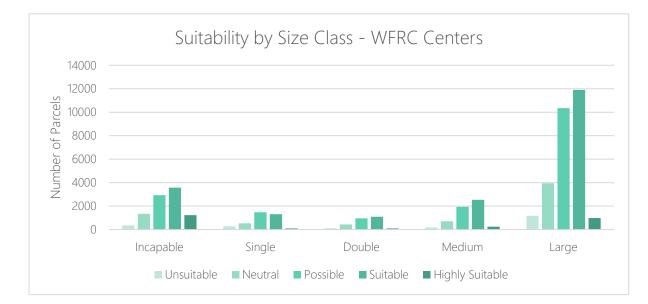
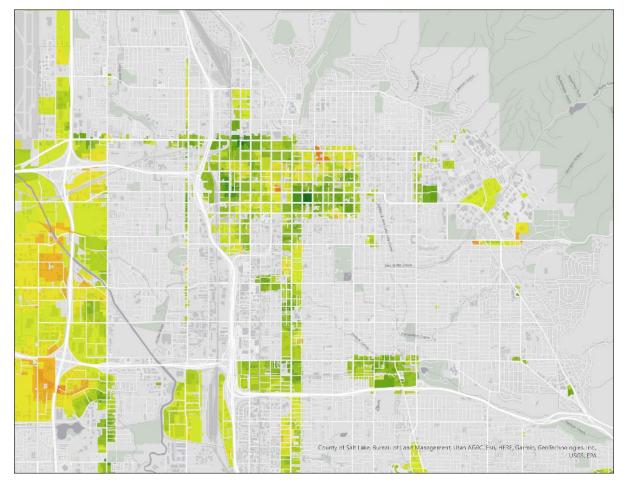



Figure 4-16 A breakdown of all WFRC center parcels by suitability and capacity.

	WFRC Centers						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	352	272	110	181	1173		
Neutral 1	1,339	540	444	707	3,947		
Possible 2	2,931	1,475	961	1,943	10,352		
Suitable 3-4	3,573	1,311	1,089	2,533	11,899		
Highly							
Suitable 5+	1,234	102	99	244	989		
Total	9,429	3,700	2,703	5,608	28,360		
					49,800		

Table 3.3 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

Figure 4-17 Suitability of parcels in WFRC centers

4.6.3 Transportation Planning

This analysis selects all capable parcels within a quarter mile of a planned road, rail, or other transit-oriented project published by the WFRC or UDOT. As these areas will already undergo maintenance or development, vertiports can be included in some projects with reduced overall impact. Unfortunately, the data available by the UGRC may include roadway maintenance projects that might not be as relevant for nearby development. The authors suggest caution when interpreting these results. Regardless, the data here offer a hint at the potential connections with existing transportation networks in land that is already likely owned by a public body, potentially reducing costs as well. However, the same proximity to major roadways causes the peaks of usable land to be generally less suitable, peaking in the possible category, which is slightly suitable for development. While this is not a hindrance to development, it does not strongly encourage it either.

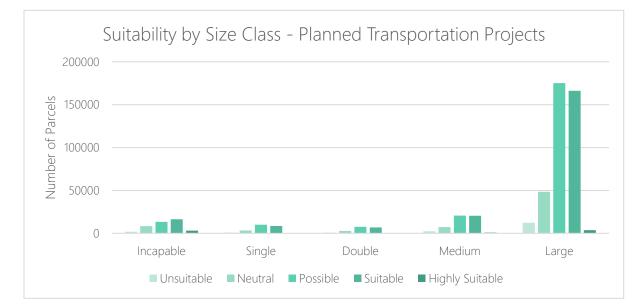


Figure 4-18 A breakdown of all parcels near transportation projects by suitability and capacity.

	Transportation Projects						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	1,854	803	753	2324	12240		
Neutral 1	8413	3347	2797	7215	48497		
Possible 2	13410	9956	7546	20575	175215		
Suitable 3-4	16407	8498	6929	20547	166172		
Highly							
Suitable 5+	3086	232	231	907	3667		
Total	43170	22836	18256	51568	405791		
					541621		

 Table 3.4 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

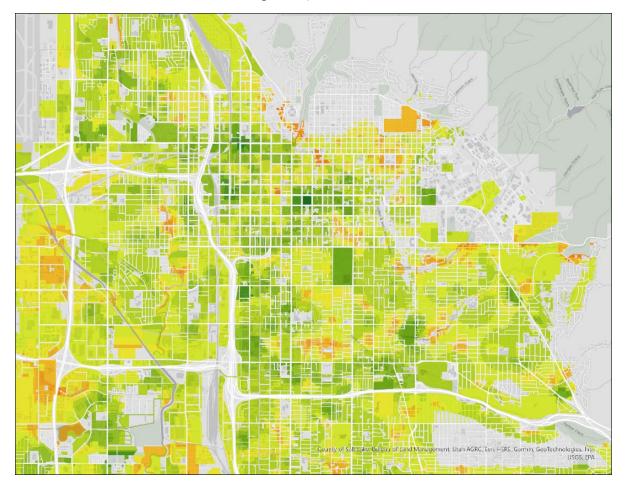


Figure 4-19 Suitability of parcels near a planned transportation project

4.6.4 Publicly Owned Parcels

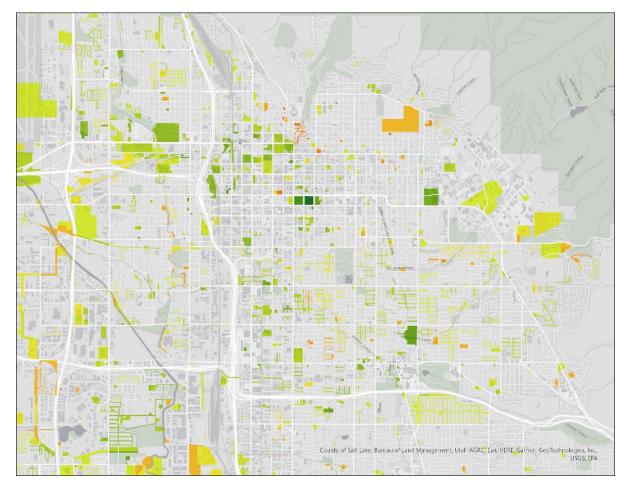

All capable parcels zoned for government, institutional, or roadway uses are collected in this analysis area. These parcels are already owned by a governing body, reducing overall vertiport development costs is that site is selected. This figure shows a generally lower degree of suitability as other focus area, likely due to the nature of the site itself. Some municipally ran services, such as transfer stations or courts are not considered suitable for vertiport development. However, there is still a significant portion of vertiports in the suitable category that should be considered.

Figure 4-20 A breakdown of all publicly owned parcels by suitability and capacity.

	Publicly Owned						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	138	77	85	134	1,097		
Neutral 1	307	136	118	202	1,992		
Possible 2	787	251	313	436	5,038		
Suitable 3-4	810	248	267	326	3,741		
Highly							
Suitable 5+	24	20	19	20	167		
Total	2,066	732	802	1,118	12,035		
					16,753		

Table 3.5 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

Figure 4-21 Suitability of publicly owned parcels

4.6.5 Equity Focus Areas

The WFRC has deemed certain areas as an equity focus area, data on which is freely available through the WFRC. These areas have any of the following: greater than 25% of residents are low income, more than 40% of residents are people of color, or more than 10% of households have no private vehicle. All capable parcels that have the equity focus area designation have been included in this focused analysis. As with any new technology, it is fair to expect that UAM will be marketed towards and received by more affluent communities. However, as UAM can deliver key households' goods or medications directly to the consumer with no need for a personal vehicle, this technology can be very useful in such communities as long as they are financially and physically accessible. The equity focus areas on this analysis also show a high ratio of suitable sites compared to the other suitability classes. These areas should be considered fully for their service to the surrounding communities.

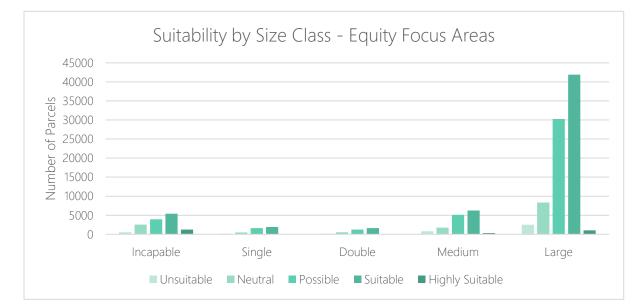
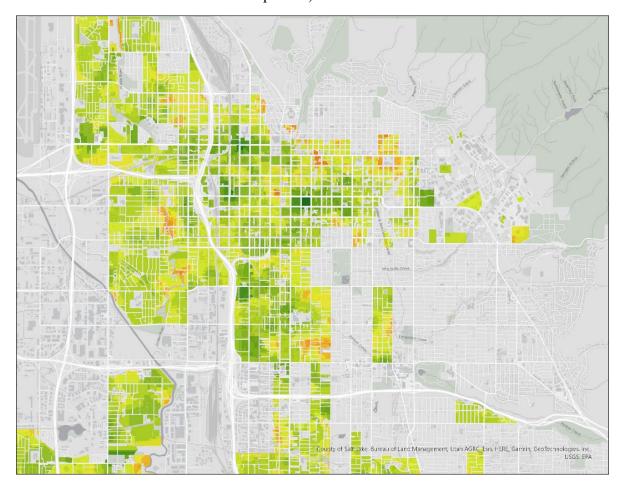



Figure 4-22 A breakdown of all WFRC Equity Focus Area parcels by suitability and capacity.

	WFRC Equity Focus Areas						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	538	153	187	790	2509		
Neutral 1	2,561	501	539	1,764	8,363		
Possible 2	3,943	1,620	1,244	5,118	30,248		
Suitable 3-4	5,386	1,908	1,608	6,251	41,890		
Highly							
Suitable 5+	1,240	69	58	306	1,053		
Total	13,668	4,251	3,636	14,229	84,063		
					119,847		

Table 3.6 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

Figure 4-23 Suitability of equity focus areas

4.6.6 Residential Areas

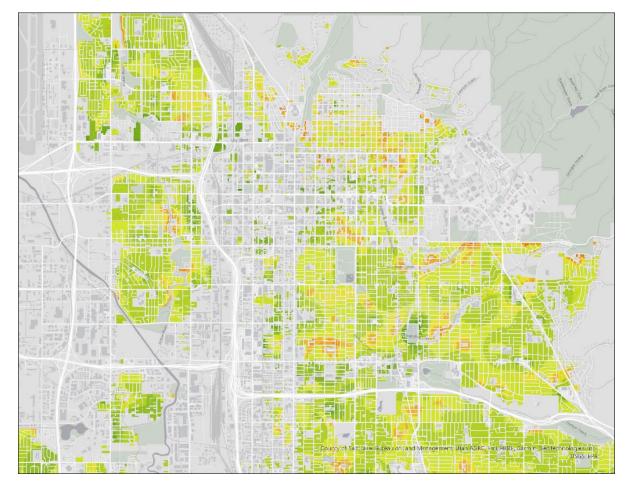

All capable residential parcels, regardless of density, are included in this focus area. As the primary delivery target for this analysis is residential delivery vertiports will especially need to be built in or near residential areas. As seen in the figure below, residential areas have a comparatively higher proportion of large class vertiports. Vertiports need to blend into residential communities to provide services easily to residents, which may prove a difficult task. Development goals may adapt and change to many small vertiports of lower suitability to fulfill such a need, similar to community mailboxes.

Figure 4-24 A breakdown of all residential parcels by suitability and capacity.

	Residential						
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	946	553	423	1,483	8,086		
Neutral 1	4,505	2,194	1,875	4,700	38,683		
Possible 2	6,838	6,962	5,176	14,152	161,584		
Suitable 3-4	8,126	5,072	4,094	12,997	131,482		
Highly							
Suitable 5+	537	89	73	350	993		
Total	20,952	14,870	11,641	33,682	340,828		
					421,973		

Table 3.7 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

Figure 4-25 Suitability of residential parcels

4.6.7 Commercial & Industrial Areas

Similar delivery focused industries are typically placed strongly within existing commercial and industrial areas. Many communities may prefer to keep vertiports in these zones as well. Future analyses will need to be ran to determine the service area from such a vertiport to determine the feasibility in the community in question. Commercial and industrial appear to have a high proportion of inadequate parcels, however that is due to the minutiae of the data where small, subdivided parcels are used to indicate ownership in a multi-unit building or office. Commercial and industrial areas also show a larger portion of suitable sites, as they can easily blend with communal areas such as retail centers already in use according to public perceptions.

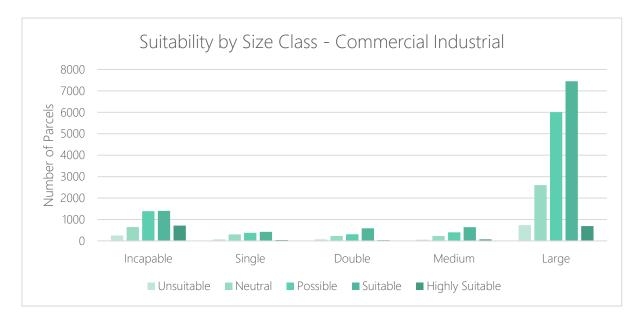


Figure 4-26 A breakdown of all commercial and industrial parcels by suitability and capacity.

		Commercial Industrial					
	Inadequate	Single	Double	Medium	Large		
	0	1	2	3-4	5+		
Unsuitable <1	249	69	71	56	735		
Neutral 1	645	305	231	233	2,602		
Possible 2	1,390	377	311	399	6,010		
Suitable 3-4	1,402	425	591	641	7,452		
Highly							
Suitable 5+	714	39	34	71	692		
Total	4,400	1,215	1,238	1,400	17,491		
					25,744		

Table 3.8 Parcel availability by suitability and capacity classifications (unit: number

of parcels)

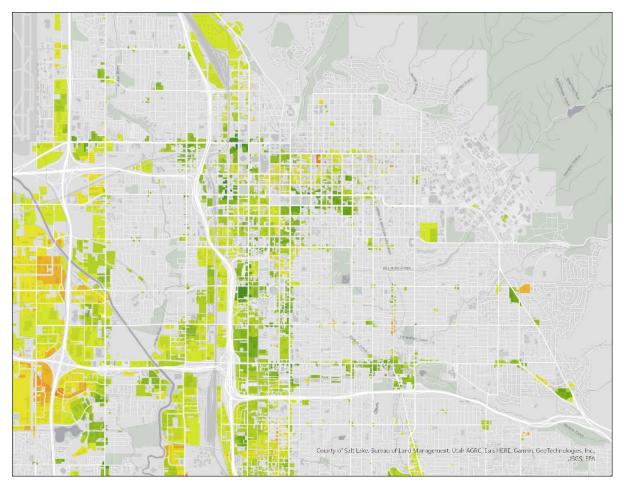


Figure 4-27 Suitability of commercial & industrial parcels

5.0 CONCLUSIONS

5.1 Summary

This pioneering study is amongst the first of its kind, pursing the impact of an entirely new infrastructure on our communities and recommending options for its optimal development. This tool uses accessible custom-written GIS toolboxes to create capability and suitability analyses for vertiport development across the Wasatch Front. By using the unique approach of evaluating suitability based on the impacts to both communities and sUAS operation this approach empowers planners and communities facing sUAS integration. While early in its development, this tool will allow developers and planners to converse about land-use decisions that could influence UAM operations. Further, the geospatial tool is customizable and freely available, allowing communities to adapting for their specific circumstances. Outputs can be simplified to facilitate stakeholder and community member discussions without sacrificing analytical depth in the background.

This tool aims to prepare for an entirely new infrastructure whose impacts are not fully known. Thus, the tool was designed to be simple, flexible, adaptable, and useful. The base methodology is the simple creation of spatial criteria, assignment of a score, and the tally of all variables. In the programming of the tool each individual spatial criterion is easy to identify, and underlying flow is made obvious for the creation or removal of spatial criterion to suit a community. While weighting is not done in this iteration, the space for its integration has been left and multiple points.

The five dimensions outlined in this work, built environment, natural environment, technological needs, regulatory requirements, and value-based are designed to be encompassing

of the most important community elements, when publicly available spatial data are provided, that may impact UAM development. The individual categories within them are provided as guidance only, as the impact of some may be found to be inconsequential while new elements may arise. Future users should look at the area of interest to determine if the categories and values should be changed.

This work aims to begin the vertiport siting process in Utah, assisting existing UAM research and development efforts already occurring in the area. Such work is foundational for future studies, both in and out of the Utah market as it directly supports the creation of quality infrastructure for a community. This work, however, is only a first step as many aspects of UAM integration are still unknown in the public planning realm. This work only creates a suitability analysis and does not include optimal locations to tie in with existing road and pedestrian networks. This analysis also makes no recommendations on the number of or density of vertiports, both of which depend on market demands, regulation and technological innovation.

The model was created for a residential use-case of sUAS facilitated package delivery in small areas and using the simple scoring structure, yet it shows high possibility for sUAS and vertiport development across the WFRC. Urban areas see a greater diversity of suitability, and a higher likelihood to reach extremely high suitability, as the areas are through developed already slowing sUAS to better blend with the existing character. Rural and suburban areas still see excellent opportunity for sUAS integration but may see higher communal impacts. Over 38% of capable parcels in the WFRC are deemed suitable or highly suitable. Only 3% of capable parcels are considered unsuitable based on the surrounding community elements, and all remaining sites show either neutral or slightly suitable for sUAS development. This shows that the WFRC holds good opportunity for sUAS development from community impact standpoint.

This entire project was completed using Modelbuilder in ArcGIS Pro. This allows complete documentation of the process that was used without a loss of information and creates new toolsets that other can run within ArcGIS Pro. The largest benefit of using Modelbuilder is the ability to preprogram entire analyses, and easily allows single steps to be changed or corrected without then manually having to complete the analysis, saving countless hours. This also facilitated a team to share a single project with the sharing of a single core geodatabase and several toolboxes in ArcGIS Pro.

The incoming development of UAM through the creation of vertiports and other infrastructural systems is rapidly coming to our communities. While industries and regulatory bodies have been working on these technologies for years, the planning sector has done little to address them. This work gives planning a starting point, identifying the optimal locations for vertiports within the fabric of Wasatch Front communities. By analyzing how the existing community may impact UAM operations, and how they may in turn affect the community, this work brings UAM integration into the planning realm and introduces the topic to regional and local planners, providing the tools to conceptualize their community in the incoming aerial context. The final results of this work will be held by UDOT, forming the background of indepth studies that include existing infrastructural elements and partner with UAM focused companies to bring such technologies to the Wasatch Front.

Across the Wasatch Front this study found significant opportunity for vertiport development. Over a third of parcels in the Wasatch Front are suitable, and only 16% show no propensity for vertiport development of any kind. Furthermore, parcels in WFRC designated centers, near planned transportation projects, and in residential areas hold near the 40% suitable

61

level showing good opportunity for sUAS infrastructure development within our communities, allowing the technology to better integrate into the societal fabric.

5.2 Limitations and Challenges

As the entire research area is so broad, and the nature of vertiport siting is so closely tied to existing planning systems the decision was made to use the median value of each parcel for final analyses. Doing so simplifies the full analysis into an understandable format that facilitates discussions in the siting, development, and impact factors of such a project. This also aligns with general systems in place and reduces the complicated analysis into an understandable format. This comes with some drawbacks. The capability analysis was run regardless of parcels, so some incapable areas that were in majority capable parcels or shown as capable. As such, it is recommended to review the capability of an area when the parcel analysis is being used.

This study is just a first step towards UAM integration and develops some tools for developers to use. Future iterations of this project will need to be built with greater integration into existing infrastructure, such as the power capacity available for vertiport development. A key aspect of how this model theoretically functions is not possible, as the actual infrastructural needs or what craft will be used is not known. Regulatory structures must also change, and vertiports adapt in turn. Building on this study requires the addition of market studies and sUAS statistics to determine the actual number and density of vertiports needed. From such knowledge this suitability data can be combined into existing transportation networks to identify the optimal sites for actual development.

This project has some limitations, primarily due to issues of data access, such as electrical line access and capacity at potential vertiport sites. As this project was done at such an early

62

stage in vertiport development, the authors designed the spatial model to be flexible and adaptive as collective knowledge of sUAS integration changes and grows. The new or changed data simply must be added to the GIS model, assigned rules for capability and suitability as followed by every other dataset and then incorporated into the model. The created GIS toolsets can run the entire capability and suitability inputs independently, and with some guidance be derived into parcel suitability and focus areas analyses. This same structure also allows variable weighting to be quickly and simply adjusted, both by individual spatial criterion and by dimension.

6.0 REFERENCES

About AGRC. (n.d.). Retrieved February 1, 2021, from Utah GIS Portal website: <u>https://gis.utah.gov/about/</u>

About FAA [Template]. (n.d.). Retrieved February 11, 2021, from <u>https://www.faa.gov/about/</u>

AGRC Mission Statement. (n.d.). Retrieved February 1, 2021, from Utah GIS Portal website: <u>https://gis.utah.gov/about/mission/</u>

About. (n.d.). Wasatch Front Regional Council. Retrieved February 1, 2021, from

https://wfrc.org/about/

Jabareen, Y. (2009). Building a Conceptual Framework: Philosophy, Definitions, and Procedure. International Journal of Qualitative Methods, 8(4), 49–62.

https://doi.org/10.1177/160940690900800406

7.0 APPENDIX A: Geospatial Database

7.1 Introduction

In order to conduct the suitability analysis for the location of UAS vertiports, part of the secondary objective of this study, each spatial criterion or "rule set" must have associating geospatial data. Geospatial data is a term used for any data related to a specific location on the Earth's surface. Visual representation of the spatial criteria comes through the analysis of the associated geospatial data. This section discusses 1. Where the geospatial data was retrieved from and 2. How the data was organized.

7.1.1 Data Sources

Almost all the geospatial data used for this research was open-source, accessible data. Datasets were downloaded from 3 main websites, including The Wasatch Front Regional Council Data (WFRC) Portal (<u>https://data.wfrc.org/</u>), Utah Utah Geospatial Resource Center (UGRC) State Geographic Database (<u>https://gis.utah.gov/data/</u>), and The Federal Aviation Administration (FAA) UAS Data Delivery System (<u>https://udds-faa.opendata.arcgis.com/</u>). Other datasets were received through direct request. The UBCP Airstrip Data was obtained through the Utah Department of Transportation's Clint Harper through a shared drive.

The Wasatch Front Regional Council is responsible for coordinating the transportation planning process for the Wasatch Front. The WFRC is "comprised of elected officials from Box Elder, Davis, Morgan, Salt Lake, Tooele, and Weber counties" ("About," n.d.)The roles of the WFRC are to be conveners, (able to collaborate with communities and partners), trusted technical experts, proactive planners, and implementers of visions and plans into action. Data gathered in separate cities, counties, regions, or Metropolitan Planning Organizations (MPOs) covering the WFRC are used for Regional Transportation Plans (RTPs) and Transportation Improvement Plans (TIPs). Much of this data is available on the WFRC Data Portal for public access and use.

Utah's Utah Geospatial Resource Center is the State of Utah's map technology coordination office. The mission of UGRC is "to encourage and facilitate the effective use of geospatial information and technology for Utah" (gis.utah.gov/about/). UGRC strives to make

65

sure coordination among fellow Utah GIS users is effective and efficient. They provide multiple services, including address geocoding services, aerial photography, custom web map apps, lidar elevation models, and more. One main roll of UGRC is to provide updated spatial data in Utah to the public through the State Geographic Information Database. Data is gathered by multiple different agencies and organizations and is accessible to all.

The Federal Aviation Administration (FAA) is a national organization under the U.S. Department of Transportation. The FAA seeks to "provide the safest, most efficient aerospace system in the world" (faa.org/about/). In order to achieve this goal, spatial data including flight patterns and policies are available on their website. Specific, new data on UAS is also available for download. The FAA is the source for all legal flight restrictions at a federal level.

7.1.2 Data Organization

The full set of data collected for this project is provided in the attached appendix table. Here we provide an abbreviated example of the structure of the data with appropriate commentary. Over 100 datasets were collected, and each dataset falls into one of the different framework categories (Built Environment, Natural Environment, Regulatory Requirements, Value-Based, and Technological).

Datasets were also assigned one of 8 separate categories based on similarities to better manipulate the data. These categories are as listed as follows: Boundaries (7 datasets), Demographics (10 datasets), Destinations (26 datasets), Hazards (11 datasets and 1 geodatabase), Land Use (13 datasets), Natural Landscape (8 datasets), Transportation (17 datasets), and UAS (3 datasets). Each data was downloaded, extracted, and saved in a file organized in one of the 8 geospatial categories listed below.

- **Boundaries:** Datasets in this category include borders around towns, counties, and regions. Examples include Utah MPO Boundaries, WFRC Boundaries.
- Demographics: Datasets in this category include structures of populations, including employment, vulnerable communities, and households. Examples include Equity Focus Areas, Access to Opportunities, Job Projections.
- Destinations: Datasets in this category include point data of specific locations.
 Examples include Fire Stations, Schools, Places of Worship.

- Hazards: Datasets in this category include any natural or human-caused risks when planning for new development. Examples include Fault Lines, Radioactive Hazard Disposal Sites, Landslides, Solid Waste Facilities.
- Land Use: Datasets in this category include how our land is used and what it is used for. These uses could be both natural and human. Examples include Designated Wilderness, Land Parcels, Water-Related Land Use, Electric Transmission.
- **Natural Landscape**: Datasets in this category include the natural environments of the area. Examples include Lakes and Rivers, DEM, Dominant Vegetation.
- Transportation: Datasets in this category include any existing or proposed plans for transportation or how to move people. Examples include Sidewalk Inventory, UTA Commuter Rail Stations, Railroads, Airports.
- UAS: Datasets in this category include legal and informational data from FAA based on flight information. Examples include UAS Facility Maps, National Security Flight Restrictions.

Listed at the end of the chapter is a table displaying the datasets originally obtained and used in this research project. This table, referred to as the data dictionary, helped to organize all spatial data downloaded and obtained from various websites. This table includes: data title, framework dimension, category, description, data type, date downloaded, and source. Every dataset that was downloaded is listed, although not all of them may have been used. Directly below in Table 7.1 is a sample portion of this data dictionary.

Data Title	Framework	Category	Description	Data	Date	Source
	Dimension			Туре	Downloaded	
Child Care	Built	Destinations	Preschool, day	Point	9/15/2020	WFRC GIS
Centers	Environment		care, etc.			Database
Roadway	Built	Transportation	This dataset	Point	9/16/2020	WFRC GIS
point	Environment		represents the			Database
projects			roadway line			
(2019-2050			projects in the			
RTP)			2019-2050			
			Regional			
			Transportation			

			Plan			
Salt Lake	Natural	Land Usage	analysis on	Polygon	9/16/2020	WFRC GIS
County	Environment		parcels within			Database
Land Use			the WFRC			
Parcels			MPO area			

7.1.3 Data Manipulation

Once data was gathered, all data needed to be double-checked in case of broken links, projected into a specific coordinate system, and then clipped to the area of interest. All datasets were then projected to the North American Datum 1983 UTM Zone 12N (commonly used for spatial data analyzed in Utah). The projected data was then clipped to the boundaries of the WFRC Metropolitan Planning Organization (MPO).

This process was done using ArcGIS Pro's Modelbuilder in order to create efficiency and iterate the process as more data was found and gathered. Figure 7-1 below shows the model created for projecting the data.

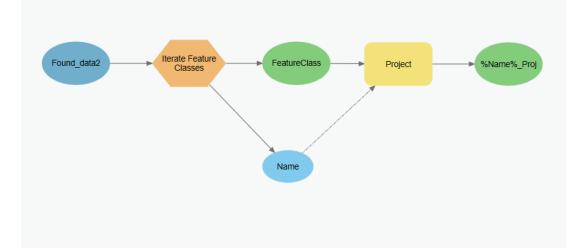


Figure 7-1 ESRI Modelbuilder to Project All Data

This model is organized by connecting the folder where all the data was saved and zipped to an iterator tool, so that the projection process can be done to each dataset in the folder. Once the project tool is used, each data feature class is saved in a new folder. Figure 7-2 displays the model built for clipping the data to the MPO.

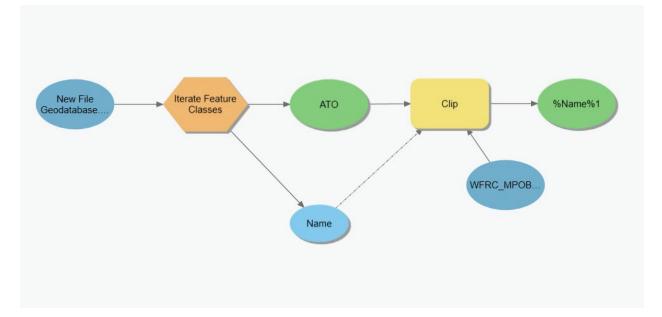


Figure 7-2 Modelbuilder to Clip All Data

This model begins by adding the projected data (now titled new file geodatabase) and iterating it once again. This time the tool used is the "clip" tool, and the WFRC MPO boundary is the clipped area. This produced a new folder of data projected and clipped to the area of focus.

Once all the data downloaded was both projected and clipped, the new data was renamed and organized into each of the 8 categories listed on the data dictionary in a geodatabase. (Note that raster datasets are filed differently from vector feature classes, due to the organization of geodatabases). The final geodatabase contains 115 separate feature classes and 3 raster datasets. The complete size is 1.60 gigabytes.

- UAV_Data3.gdb
 - Boundaries
 - Demographics
 - Destinations
 - ▷ B Hazards
 - ▷ 🗗 Land_Use
 - Natural_Environment
 - Transportation
 - ▷ 🗗 UAS
 - Image: Slope_WFRC
 - Ut_Landcover
 - WFRC_DEM

Figure 7-3 Organized Geodatabase Folders

8.0 APPENDIX B: Spatial Criteria and Variables

Community Element	Dimension	Rule	Score	Criteria	Source
Historic District	Built Others	Field	-1		UGRC
	Built Others	Selected Field	1	Privately Owned Land	UGRC
	Natural Environment	Buffer	-1	Parks and Recreation	
	Natural Environment	Buffer	-1	State Parks and Recreation	
Land Ownership	Natural Environment	Buffer	-1	BLM, DNR, USFS, USFWS	
Parks	Built Others	Field	1		UGRC
Frontrunner Stations	Built Others	Buffer	1		UGRC
Trax Stations	Built Others	Buffer	1		UGRC
	Built Point	Buffer	-1		UGRC
Law Enforcement	Value-Based	Field Buffer	-1		
	Built Point	Buffer	1		UGRC
Libraries	Value-Based	Field Buffer	1		
	Built Point	Buffer	1		WFRC
Community Services	Value-Based	Field Buffer	1		
	Built Point	Buffer	1		WFRC
Community Centers	Value-Based	Field Buffer	1		
	Built Point	Buffer	-1		UGRC
Cemeteries	Value-Based	Field Buffer	-1		
	Built Point	Buffer	1		WFRC
Retail Centers	Value-Based	Field Buffer	1		
Public Schools	Built Point	Buffer	1		WFRC
Private Schools	Built Point	Buffer	1		WFRC
	Built Point	Buffer	1		WFRC
Grocery Stores	Value-Based	Field Buffer	1		
	Built Point	Buffer	-1		UGRC
Fire Stations	Value-Based	Field Buffer	-1		
	Built Point	Buffer	1		WFRC
Child Care	Value-Based	Field Buffer	-1		
	Built Point	Buffer	-1		WFRC
Churches	Value-Based	Field Buffer	-1		
Correctional Facilities	Built Point	Buffer	-1		UGRC

Story Map: <u>https://storymaps.arcgis.com/stories/a5e89074c5f74cbb94e3f14850b694c2</u>

Community Element	Dimension	Rule	Score	Criteria	Source
	Value-Based	Field Buffer	-1		
Urgent Care Centers	Built Point	Buffer	-1		WFRC
		Buffer	-1	Minor	UGRC
Streams	Natural Environment	Buffer	-1	Major	
Floodplains	Natural Environment	Field	-1	A, Ae, Ve	UGRC
Lakes	Natural Environment	Buffer	-1	Not	UGRC
Lakes	Natural Environment	Buller	-1	Internment	UGRU
Conservation Easements	Natural Environment	Buffer	-1		UGRC
Wetlands	Natural Environment	Buffer	-1		UGRC
Dams	Natural Environment	Buffer	-1		UGRC
Airports	Regulatory	Buffer	-1		UGRC
Hospitals	Natural Environment	Buffer	-1		WFRC
Monuments And Markers	Value-Based	Buffer	-1		UGRC

Table A.2 Capability Variables

Community Element	Rule	Selector	Source
Conservation Easements	Field		UGRC
Electrical Lines	Buffer	50ft	UGRC
Dams	Buffer	50ft	UGRC
Railroads	Buffer	50ft	UGRC
Streams	Buffer	15ft	UGRC
Roads with speed limit >=65	Buffer	100ft	UGRC
Roads with speed limit <65	Buffer	50ft	UGRC
Minor Water	Buffer	50ft	UGRC
Major Water	Buffer	100ft	UGRC
Land Ownership (BLM, DNR, DOD, SITLA, USFS, UFWS)	Field		UGRC
Solid Waste Facilities	Field		UGRC
Hospitals	Field		WFRC
Child Care Facilities	Field		WFRC
Power Plants	Field		UGRC
Private Schools	Field		WFRC
Public Schools	Field		WFRC
Correctional Facilities	Buffer	500ft	UGRC
Urgent Care	Field		WFRC
Airport	Field		UGRC
Slope	Field	10%	UGRC

A.3 Generated Datasets

Dataset	Components	Method
	Ownership Data for Salt Lake,	Union. Box Elder not included as county would not
MasterOwnership	Weber, and Davis Counties	provide data for free and suitable work arounds were found
		Union. Add field and calculate to hold all values needed in
MasterParcel	All Parcels	a single column.
	Entire WFRC, All incapable	
Capability Vector	components	Dissolved WFRC boundary with incapable areas erased
	Inverted capability raster holding	
Capability Invert	only incapable areas	"is null" ran on the capability raster
Suitability		Raster calculator multiplies the rasters where capability is
Combined Raster	Suitability and Capability	either a 1 or zero.
Zonal Stats Specif	ïc	
Parcel Suitability	Parcel Suitability for all counties	
Union	combined, cleaned as needed.	
	WFRC coded land use for each	
Parcel LU Merge	parcel	Spatial join Parcel Suitability Union and WFRC land use
	All Parcels with WFRC Land Use	
	Codes with size and suitability	Add field and calculate size and suitability classes in
Parcel Land Use	classes	python

Appendix: Data Dictionary for UDOT Report: UAV Siting

Data #	Data Title	Frame work Catego ry	Category	Description	Data Type	Date Download	Organiz ation	Source	Link
95	FAA UAS Facility Map	Regula tory Restric tions	UAS	The UAS Facility Maps are designed to identify permissible altitudes (above ground level) at which UAS, operating under the Small UAS Rule (14 CFR 107), can be authorized to fly within the surface areas of controlled airspace.	Polygon	9/23/2020	FAA	FAA Free Database	https://udds- faa.opendata.arcgis.com/data sets/7ce2994f4972476da009f dd4d2dc157e_0
96	National Security UAS Flight Restrictions	Regula tory Restric tions	UAS	Defined Prohibited flight areas	Polygon	9/23/2020	FAA	FAA Free Database	https://udds- faa.opendata.arcgis.com/data sets/0270b9d8a5d34217856c c03aaf833309 0
99	UBCP Airstrips	Regula tory Restric tions	UAS	Points defining UBCP airstrips nation-wide	Point	12/15/2020	Clint Harper	Shared Google Drive	
89	UTA Commuter Rail Stations	Built Enviro nment	Transport ations	This point file displays locations of commuter rail (FrontRunner) stations for planning or other general purposes	⁻ Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/uta-commuter-rail-stations- from-agrc?geometry=- 115.342%2C40.361%2C- 108.358%2C41.090
92	EPA Walkability Index	Values- Based	Transport ation	The Walkability Index dataset characterizes every Census 2010 block group in the U.S. based on its relative walkability		11/22/2020	WFRC	WFRC Free Database	https://data.wfrc.org/dataset s/epa-walkability-index
93	Park Accessability: 10 Min Walk	Values- Based	Transport ation	This data set contains the polygon results of the service area network analysis for 10 minute walk from park facilities	<u>.</u>	11/22/2020	WFRC	WFRC Free Database	https://data.wfrc.org/dataset s/park-accessibility-10-minute walk
8	Active Transportation Point Projects (2019-2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the active transportation point projects in the 2019-2050 Regional Transportation Plan	Point	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/active-transportation-point- projects-2019-2050- rtp?geometry=- 114.030%2C40.603%2C- 109.858%2C41.329
35	Transit	Built Enviro nment	Transport ation	This dataset contains the UTA bus route and stop locations, commuter rail route and stop locations, and light rail route and stop locations. The extent of these data is primarily along the Wasatch Front.	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/transit/
81	Heliports	Built Enviro nment	Transport ation	'public use' point dataset of heliport landing facilities throughout the state of Utah.	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/air/
82	Airport Locations	Built Enviro nment	Transport ation	is a statewide point dataset that contains data from the Geographic Names Information System (GNIS).	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/air/
83	Transit Point Projects (2019- 2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the transit line projects in the 2019-2050 Regional Transportation Plan	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/transit-point-projects-2019- 2050-rtp?geometry=- 115.403%2C40.503%2C- 108.418%2C41.230
84	Railroads	Built Enviro nment	Transport ation	portrays the location of railroads in the state of Utah derived from the most recent high resolution imagery available		9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/railroads/

85	Front Runner Double Track Sections	Built Enviro nment	Transport ation	This dataset represents the sections of the current (2019) UTA FrontRunner commuter rail route that currently have double tracking in place. These include the sections where two rail guideways are separated by at least a standard offset needed for parallel tracking, and do not include portions where the route transitions (switches, switch approaches) between single and double tracking.		9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/front-runner-double-track- sections?geometry=- 115.342%2C40.363%2C- 108.357%2C41.091
86	Roadway line projects (2019- 2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the roadway line projects in the 2019-2050 Regional Transportation Plan	Polyline	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/roadway-line-projects-2019- 2050-rtp?geometry=- 118.920%2C40.271%2C- 104.951%2C41.722
87	Airports	Built Enviro nment	Transport ation	is a 'public use' linear dataset of aircraft landing facilities throughout the state of Utah. Attribute information includes site number, facility type, location id, city and county in which the facitity is located, full name of facility, owner type, and elevation. Transportation.Airports can be used for regional analysis applications. There are currently 185 airport landing facilities in this dataset.	2	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/air/
88	Active Transportation Line Projects (2019-2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the active transportation line projects in the 2019-2050 Regional Transportation Plan	Polyline	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/active-transportation-line- projects-2019-2050- rtp?geometry=- 116.141%2C40.262%2C- 107.797%2C41.713
90	Road Centerlines	Built Enviro nment	Transport ation	is a multi-purpose statewide roads dataset for cartography and range based-address location	Polyline	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/tra nsportation/roads-system/
91	Transit Line Projects (2019- 2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the transit line projects in the 2019-2050 Regional Transportation Plan	Polyline	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/transit-line-projects-2019- 2050-rtp?geometry=- 115.431%2C40.614%2C- 108.447%2C41.340
94	Roadway point projects (2019- 2050 RTP)	Built Enviro nment	Transport ation	This dataset represents the roadway line projects in the 2019-2050 Regional Transportation Plan	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/roadway-point-projects- 2019-2050-rtp?geometry=- 115.466%2C40.638%2C- 108.481%2C41.364
97	Sidewalk Inventory (2016)	Built Enviro nment	Transport ation	The shapefile is based off of a road centerlines dataset sourced from AGRC and looks only at major roadways including interstates, US and State Highways, major arterials, and other federal-aid eligible roads. Each segment of road is given a sidewalk classification ranging from 0- 6	,	9/14/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/sidewalk-inventory- 2016?geometry=- 116.284%2C40.276%2C- 107.940%2C41.727
54	5 Meter DEM	Natura I Enviro nment	Natural Landscap e	5 M elevation raster data	Raster	9/21/2020	AGRC	Utah AGRC Database	https://raster.utah.gov/?cat= 5%20Meter%20%7BDEM%7D
58	GAP Landcover Classification	Natura I Enviro nment	Natural Landscap e	Landcover classification for the State of Utah for the purposes of regional terrestrial biodiversity assessment	TIFF	9/16/2020	AGRC	Utah AGRC Database	https://swregap.org/
66	Dams	Natura I Enviro nment	Natural Landscap e	Dam locations as derived from the USGS Geographic Names Information System (GNIS).	Point	9/24/2020	AGRC	Utah AGRC Database	<u>https://gis.utah.gov/data/wat</u> er/

		Natura							
67	Dominant Vegetation	l Enviro nment	Natural Landscap e	Statewide distribution of dominant vegetation species in Utah	Polygon	9/16/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/bio science/
69	Floodplains	Natura I Enviro nment	Natural Landscap e	Flood zones in Utah	Polygon	9/24/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/wat er/flood-areas/
70	Lakes	Natura I Enviro nment	Natural Landscap e	recommended data layer for depicting Utah's lakes, reservoirs, and smaller features, etc.	Polygon	9/24/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/wat er/lakes-rivers-dams/
71	Wetlands	Natura I Enviro nment	Natural Landscap e	Wetland location and classification polygon map data, derived from the U.S. Fish and Wildlife Service's National Wetlands Inventory (NWI), Wetland Mapping Projects areas and descriptions, and U.S. Fish and Wildlife Service Riparian Areas	Polygon	9/22/2020	AGRC	Utah AGRC Database	<u>https://gis.utah.gov/data/wat</u> <u>er/wetlands/</u>
75	Streams	Natura I Enviro nment	Natural Landscap e	is the recommended data layer for depicting Utah's streams, canals, washes, etc	Polyline	9/24/2020	AGRC	Utah AGRC Database	<u>https://gis.utah.gov/data/wat</u> <u>er/lakes-rivers-dams/</u>
62	Wasatch Choice 2050 Centers (Vision Map)	Values- Based		This dataset represents the regionally significant centers and land use in the Wasatch Choice 2050 Vision Map. Land use types in this dataset include four levels of centers (metropolitan, urban, city, neighborhood), employment districts, education districts, industrial districts, and special districts (airports, mining, military, etc.).		9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/wasatch-choice-2050- centers-vision- map?geometry=- 118.898%2C40.073%2C- 104.929%2C41.529
60	Electric Transmission	Techn ologica l	Land Usage	Electrical generation and distribution facilities in Utah.	Polyline	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/utili ties/
44	Wilderness Boundaries	Natura I Enviro nment	Land Usage	Boundaries of federally designated wilderness on both Forest Service and BLM lands	Polygon	9/17/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/bou ndaries/wilderness/
47	Box Elder Land Use Parcels	Natura I	Land Usage	analysis on parcels within the WFRC MPO area	Polygon	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/box-elder-land-use- parcels?geometry=- 113.791%2C41.292%2C- 110.299%2C41.652
56	Davis County Land Use Parcels	Natura I Enviro nment	Land	analysis on parcels within the WFRC MPO area	Polygon	9/16/2020	WFRC	WFRC GIS Database	<u>https://data.wfrc.org/dataset</u> <u>s/davis-county-land-use-</u> <u>parcels</u>
57	Land Ownership	Natura I Enviro nment	Land Usage	Statewide land ownership categories.	Polygon	9/16/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/cad astre/land-ownership/
61	Salt Lake County Land Use Parcels		Land Usage	analysis on parcels within the WFRC MPO area	Polygon	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/salt-lake-county-land-use- parcels
78	Water Related Land Use	Natura I Enviro nment	Land Usage	Water related land use in Utah. Includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and residential/industrial areas.		9/24/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/wat er/
79	Weber County Land Use Parcels	Natura I Enviro nment	Land	analysis on parcels within the WFRC MPO area	Polygon	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/weber-county-land-use- parcels?geometry=- 113.922%2C41.041%2C- 110.430%2C41.403

80	Conservation Easements	Natura I Enviro nment	Land Usage	conservation Easements in Utah	Polygon	9/22/2020	AGRC	Utah AGRC Database	https://drive.google.com/driv e/folders/0ByStJjVZ7c7mNFBi QnkxY3hCLTA
59	Regionally Significant Centers and Land Use (2019- 2050 RTP)	Built Enviro nment	Land Usage	This dataset represents the regionally significant land use in the 2019-2050 Regional Transportation Plan. Land use types in this dataset include four levels of centers, employment districts, education districts, industrial districts, and special districts (airports, military, mining, etc.)	Polygon	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/regionally-significant- centers-and-land-use-2019- 2050-rtp?geometry=- 120.178%2C39.738%2C- 106.209%2C41.201
63	Mobile Home Parks	Built Enviro nment	Land Usage	This dataset was created by comparing the FEMA Mobile Home Park dataset (point features) to Fall 2018 aerial photography and county assessor tax parcels to identify mobile home parks and approximate the number of operational houseing units. Mobile and manufactured homes on their own parcels were excluded from this dataset.	Polygon	11/9/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/mobile-home- parks?geometry=- 112.370%2C41.525%2C- 111.496%2C41.615
98	Generalized Future Land Use (2020)	Built Enviro nment	Land Usage	This dataset presents a generalized view of local land use plans along Utah's Wasatch Front. Each city's most recent general plan was interpreted in 2020 to provide a best match to a set of common, simplified set of land use codes.		12/30/2020	WFRC	WFRC GIS Database	Generalized Future Land Use (2020) WFRC Open Data
18	avalanche paths	Natura l Enviro nment	Hazards	snow avalanche paths in the tri-canyon area of the Wasatch Front, Utah. This dataset contains the name, size of slidepath, return interval, starting zone elevation, vertical fall and starting zone aspect for some of the avalanches		11/9/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/geo science/avalanche/
43	Geologic Formations	Natura I Enviro nment	Hazards	geologic formations found in Utah as digitized by the Utah Geological Survey in 2000		11/9/2020	AGRC	Utah AGRC Database	https://opendata.gis.utah.gov /datasets/utah-geologic- formations-line?geometry=- 128.608%2C36.515%2C- 94.485%2C42.445
45	Landslides	Natura I Enviro nment	Hazards	severity of landslide risk in Utah		11/9/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/geo science/landslides/
48	Faults and Folds	Natura I Enviro nment	Hazards	fault lines/folds in Utah		11/9/2020	agrc	Utah AGRC Database	https://gis.utah.gov/data/geo science/quaternary-faults/
27	brownfields NOT targeted for cleanup	Built	Hazards	brownfield projects not targeted for cleanup		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
31	Brownfields targeted for cleanup	Built Enviro nment	Hazards	Brownfield projects targeted for cleanup		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
46	Underground Storage tanks	Built Enviro nment	Hazards	Facilities with underground storage tanks		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
49	Hazard Waste and Oil Facilities	Built Enviro nment	Hazards	Hazard Waste Facilities and Used Oil Facilities		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/

50	Oil/Gas Well points	Built Enviro nment	Hazards	This dataset depicts oil and gas well points in Utah from the Utah Department of Natural Resources, Oil Gas and Mining Division. The dataset contains the API code, well and company name, account number, filed number, field name, elevation, locations coordinates, lease numbers, well type and status, total cumulative oil, gas and water, and more.		11/22/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/ene rgy/oil-gas/
51	Radioactive Hazard disposal sites	Built Enviro nment	Hazards	Radioactive Hazard disposal sites		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
52	Solid Waste Facilities	Built Enviro nment	Hazards			11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
53	UTS Hazard Data	Built Enviro nment	Hazards	geodatabase of other hazards in Utah		11/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/env ironment/deq-land-related- contaminant-cleanup-sites/
2	Power Plants (C02)	Techn ologica I	Destinatio ns	This dataset contains Power Plant locations from the CO2 project for the State of Utah	Point	9/18/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/ene rgy/energy-generation/
16	Trails	Natura I Enviro nment	Destinatio ns	The trails dataset currently contains trail names, types, and some information on allowable modes of travel		9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/recr eation/trails/
1	Markers and Monuments	Built Enviro nment	Destinatio ns	Location, text, photos, about historic markers and monuments throughout Utah	Point	9/22/2020	AGRC	Utah AGRC Database	<u>https://gis.utah.gov/data/hist</u> ory/
3	Retail Centers	Built Enviro nment	Destinatio ns	TAZs with 200 or more retail jobs were selected. Parcel Data was filtered to commercial parcels only (or retail only in Salt Lake County). Clustered commercial parcels within the selected TAZs were cross-checked using aerial imagery and google maps street-view to identify shopping centers. DWS retail employment data was heat-mapped and used to cross-check locations of identified shopping centers.	Point	9/15/2020	WFRC	WFRC GIS Database	<u>https://data.wfrc.org/dataset</u> <u>s/retail-centers</u>
4	state facilities	Built Enviro nment	Destinatio ns	This dataset contains a wide and varied collection, some schools in the k-12 system and also higher education buildings, Office buildings, port of entries, rest areas and fish hatcheries. It also contains many other facilities such as UDOT sheds, restrooms, and other smaller facilities. The web application showing this data, shows other facility data to give context.	Point	9/23/2020	AGRC	Utah AGRC Database	<u>Val</u>
5	Utah Hospitals	Built Enviro nment	Destinatio ns	Hospital Level Facilities	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-hospitals?geometry=- 102.470%2C- 16.829%2C71.554%2C72.120
6	Utah Places of Worship	Built Enviro nment	Destinatio ns	Utah Churches, Wards, Temples, etc	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-places-of- worship?geometry=- 99.972%2C- 16.837%2C74.052%2C72.117

7	Utah Private Schools	Built Enviro nment	Destinatio ns	flood zones in Utah	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-private-schools
9	Utah Public Schools	Built Enviro nment	Destinatio ns	Utah K-12 public schools	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-public- schools?geometry=- 139.538%2C36.502%2C- 83.661%2C42.433
10	Utah Urgent Care Facilities	Built Enviro nment	Destinatio ns	Utah Urgent Care Facilities	Point	9/16/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-urgent-care- facilities?geometry=24.503%2 C20.875%2C111.515%2C63.5 07
11	United States Postal Service Data	Built Enviro nment	Destinatio ns	These datasets are related to mail delivery. Included are post office locations and zipcode boundaries in Utah.	Point and Polygon	9/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/loc ation/u-s-postal-service/
12	Wind Energy	Built Enviro nment	Destinatio ns	This dataset depicts renewable wind resources identified by the Utah Renewable Energy Zone (UREZ) task force and contains the site name, wind potential, location comments and more.	Point and Polygon	9/18/2020	AGRC	Utah AGRC Database	<u>https://gis.utah.gov/data/ene</u> rgy/renewable-energy/
13	Building Footprints	Built Enviro nment	Destinatio ns	Building footprints of Utah showing the perimeter of a building where it meets the ground	Polygon	9/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/loc ation/building-footprint/
14	Historic Districts	Built Enviro nment	Destinatio ns	Historic Districts in Utah	Polygon	9/22/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/hist ory/
15	Parks	Built Enviro nment	Destinatio ns	shows the locations of local parks excluding State and Federally owned parks. This dataset also contains the name, county, city, acres, type and construction status of the parks.	Polygon	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/recr eation/local-parks/
36	law enforcement	Built Enviro nment	Destinatio ns	contains locations for law enforcement facilities in Utah	^s Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/soci ety/public-safety/
41	Address Points	Built Enviro nment	Destinatio ns	This dataset contains GIS mapping data representing address point locations (near complete) and the address grid system quadrant boundaries (NE, SE, SW, NW) in Utah	Point	9/16/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/loc ation/address-data/
42	Libraries	Built Enviro nment	Destinatio ns	provides locations and information for public Libraries and their branches throughout Utah	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/soci ety/schools-libraries/
55	Cemeteries	Built Enviro nment	Destinatio ns	Cemetery Locations in Utah	Point	9/22/2020	AGRC	Utah AGRC Database	https://drive.google.com/driv e/folders/0ByStJjVZ7c7mXzY5 enhwaTBQa2s
64	Child Care Centers	Built Enviro nment	Destinatio ns	Preschool, day care, etc	Point	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-child-care- centers?geometry=- 120.767%2C39.282%2C- 104.079%2C42.195
65	Community Centers	Built Enviro nment	Destinatio ns	Community centers include city recreation centers, libraries, and other community recreation facilities	Point	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/community- centers?geometry=- 115.908%2C39.196%2C- 107.564%2C40.670
68	Community Services	Built Enviro nment	Destinatio ns	Community services include city halls, county offices, courthouses, food banks, human services, the state capitol, vehicle services, and workforce services	Point	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/community- services?geometry=- 116.194%2C40.010%2C- 107.850%2C41.467
72	correctional facilities	Built Enviro nment	Destinatio ns	contains locations for jails and prisons in Utah	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/soci ety/public-safety/

74	fire stations	Built Enviro nment	Destinatio ns	includes any location where fire fighters are stationed or based out of, or where fire fighting equipment is stored.	Point	9/23/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/soci ety/public-safety/
76	GNIS and Place Locations	Built Enviro nment	Destinatio ns	The GNIS contains information about physical and cultural geographic features in the United States and associated areas, both current and historical, but not including roads and highways	Point	9/21/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/loc ation/gnis/
77	Grocery and Food Stores	Built Enviro nment	Destinatio ns	Grocery and food stores in Utah	Point	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-grocery-and-food- stores-udaf
29	Jobs Projections (City Area)	Values- Based	-	All Job projections in city area based on Real Estate Market Model	Polygon	10/20/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/all-jobs-projections-city- area?geometry=- 115.509%2C40.530%2C- 108.525%2C41.257
30	Jobs Projections (TAZ)	Values- Based	•	All Job projections in city area based on Real Estate Market Model	Polygon	10/20/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/all-jobs-projections-taz
32	LUCA Block Address Counts	Values- Based	Demogra phics	Census Master Address File (MAF) address count compared to state compiled address point (SGID10.LOCATION.AddressPoints) count by census block.	Polygon	10/20/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/loc ation/
33	Population Projections (City Area)	Values- Based	Demogra phics	Continued REMM projections for City Area and TAZ	Polygon	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/population-projections-city- area
34	Population Projections (TAZ)		Demogra phics	Continued REMM projections for City Area and TAZ	Polygon	9/15/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/population-projections- taz?geometry=- 114.103%2C40.530%2C- 109.931%2C41.257
38	Access to Opportunities Work Related	Values- Based	Demogra phics	Two Access To Opportunity (ATO) scores attempt to convey the localized variation of Accessibility of households to jobs and workplaces to workers.		11/5/2020	WFRC	WFRC Free Database	https://data.wfrc.org/dataset s/6de24e0077a948228bdc75 87350d3991_0
39	Commute Source Intensity	Values- Based	Demogra phics	Nearby employment intensity, residential intensity, and combined		11/5/2020	WFRC	WFRC Free Database	https://data.wfrc.org/dataset s/commute-source-intensity
40	Equity Focus Areas	Values- Based	Demogra phics	FHWA has defined underserved individuals as those that meet one or more of the following criteria: Low Income, Racial-Ethnic Minority, Elderly, Children, Limited English Proficiency, or Persons with Disabilities. WFRC, under the direction of its committees and Board, has adopted an Equity Focus Areas framework as an important input to its transportation planning efforts.		11/21/2020	wfrc	WFRC Free Database	https://data.wfrc.org/dataset s/equity-focus-areas
26	Household Projections (City Area)	Built Enviro nment	Demogra phics	WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:	Polygon	9/14/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/household-projections-city- area?geometry=- 114.103%2C40.530%2C- 109.931%2C41.257

28	Household Projections (TAZ)	Built Enviro nment	Demogra phics	The annual projections are forecasted for each of the Wasatch Front's 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city	Polygon	9/14/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/household-projections- taz?geometry=- 128.235%2C36.517%2C- 94.859%2C42.446
17	BLM National Monuments and Conservation Areas	Natura I Enviro nment	Boundarie	block (25 acres). BLM National Monuments and Conservation Areas. Includes current Bears Ears and Grand Staircase Escalante National Monument boundaries and historic boundaries prior to downsizing.	Polygon	9/16/2020	AGRC	Utah AGRC Database	https://drive.google.com/driv e/u/0/folders/1m6BhUUa5Dl R58nMwhEAE37guBEAx4PZj
19	City, County, and State Boundaries	Built Enviro nment	Boundarie s	Utah city (municipal), county, and state boundaries	Polygon	9/16/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/bou ndaries/citycountystate/
20	Emergency Regions	Built Enviro nment	Boundarie s	represents the Emergency Management Regions of Utah	Polygon	9/22/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/hea lth/emergency-regions/
21	Health Districts 2015	Built Enviro nment	Boundarie s	contains the health districts in the state of Utah	Polygon	9/22/2020	AGRC	Utah AGRC Database	https://gis.utah.gov/data/hea lth/health-districts/
22	<u>Regional</u> <u>Boundary</u> <u>Components</u>	<u>Built</u> Enviro nment	Boundarie s	This layer can easily be queried for the following boundaries which cover all of Davis, Morgan, Salt Lake, Tooele, Weber Counties and a southern portion of Box Elder County: - WFRC Metropolitan Planning Organization - WFRC Rural Planning Organizations (Tooele RPO and Morgan County - Ogden Valley RPO, WFRC Association of Governments (AOG) - TAZ covered areas for the WFRC/MAG transportation model.	Polygon	9/14/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/regional-boundary- components
23	Utah MPO Boundaries (from UDOT)	Built Enviro nment	Boundarie S	This dataset contains 2014 planning boundaries for Utah's Metropolitan Planning Organizations (MPO). The planning boundaries are derived from census urban boundaries but also include additional areas which are likely to become urbanized in the next 20 years. These boundaries represent the spatial extent to which MPO's are responsible for transportation planning and project funding prioritization. Boundaries were provided by each MPO in September of 2014 and combined into a single state-wide dataset.	Polygon	9/14/2020	WFRC	WFRC GIS Database	https://data.wfrc.org/dataset s/utah-mpo-boundaries-from- udot?geometry=- 129.317%2C36.457%2C- 95.941%2C42.391
24	WFRC Boundaries	Built Enviro nment	Boundarie s	One feature per administrative boundary for the MPO, RPOs, and AOG areas that cover Davis, Morgan, Salt Lake, Tooele, Weber Counties and a southern portion of Box Elder County. These polygons overlap and users are encouraged to use a query or filter to display each desired boundary individually.	Polygon	9/14/2020	WFRC	WFRC GIS Database	<u>https://data.wfrc.org/dataset</u> <u>s/wfrc-boundaries</u>