TABLE OF CONTENTS

1.0 Overview & Considerations ... 1
 1.1 UDOT Design Project Organization 1
 1.2 Signal Warrants .. 2
 1.3 Signal Actuation .. 2
 1.4 Level of Service .. 3
 1.5 Project Design Criteria (PDC) ... 3
 1.6 State Furnished Materials .. 3
 1.7 Bicycles ... 4
 1.8 Pedestrian Facilities ... 4
 1.9 Lighting ... 4
 1.10 Signal Interconnect (ATMS) ... 5
 1.11 Local Involvement .. 5
 1.12 Site Visit ... 5
 1.13 Project Delivery ... 7
 1.14 Quality Control / Quality Assurance 9

2.0 General Plan Instructions ... 9
 2.1 Title Block ... 10
 2.2 Plan Sheet Numbering .. 10
 2.3 Plan Sheets ... 11
 2.4 Subsurface Utility Engineering (SUE) 14

3.0 Traffic Signal Design ... 16
 3.1 Signal Poles, Mast Arms, and Foundations 16
 3.2 Signal Heads .. 19
 3.3 Lane Lines and Striping .. 30
 3.4 Signing .. 31

4.0 Lighting .. 35
 4.1 Luminaire Components .. 35
 4.2 Luminaire Placement ... 36
 4.3 Luminaire Type ... 36
 4.4 Alternate Mounting Options ... 37

5.0 Pedestrian Signal Design ... 38
 5.1 Pedestrian Signal ... 38
 5.2 Pedestrian Hybrid Beacon Crosswalk or High-intensity Activated Crosswalk (HAWK) ... 39
 5.3 Pedestrian Flashing Beacon Crosswalk 39
 5.4 Post-Mount Pedestrian Flashing Beacon Crosswalk 40

6.0 Vehicle and Pedestrian Detection .. 41
 6.1 Vehicle Detection Zones and NEMA Phasing 41
 6.2 RADAR Detection ... 44
 6.3 Induction Loops & Wireless Sensors 49
 6.4 Video Detection ... 53
 6.5 Pedestrian Detection ... 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Pedestrian Access</td>
<td>55</td>
</tr>
<tr>
<td>6.7</td>
<td>Bicycle Detection</td>
<td>55</td>
</tr>
<tr>
<td>6.8</td>
<td>Emergency Pre-emption</td>
<td>56</td>
</tr>
<tr>
<td>7.0</td>
<td>Advanced Warning Signal Systems</td>
<td>57</td>
</tr>
<tr>
<td>7.1</td>
<td>AWS Design</td>
<td>57</td>
</tr>
<tr>
<td>8.0</td>
<td>Power Service Connection</td>
<td>61</td>
</tr>
<tr>
<td>8.1</td>
<td>Underground Service Pedestal</td>
<td>61</td>
</tr>
<tr>
<td>9.0</td>
<td>Signal Circuit Design</td>
<td>62</td>
</tr>
<tr>
<td>9.1</td>
<td>Power Source</td>
<td>62</td>
</tr>
<tr>
<td>9.2</td>
<td>Signal Heads</td>
<td>62</td>
</tr>
<tr>
<td>9.3</td>
<td>Lighting</td>
<td>65</td>
</tr>
<tr>
<td>9.4</td>
<td>Detection</td>
<td>65</td>
</tr>
<tr>
<td>9.5</td>
<td>Conduit</td>
<td>68</td>
</tr>
<tr>
<td>9.6</td>
<td>Junction Boxes</td>
<td>70</td>
</tr>
<tr>
<td>9.7</td>
<td>Ground Rods & Wires</td>
<td>71</td>
</tr>
<tr>
<td>9.8</td>
<td>Controller & Cabinet</td>
<td>71</td>
</tr>
<tr>
<td>9.9</td>
<td>Interconnect (ATMS)</td>
<td>71</td>
</tr>
<tr>
<td>10.0</td>
<td>Other Considerations</td>
<td>73</td>
</tr>
<tr>
<td>10.1</td>
<td>ATMS Improvements</td>
<td>73</td>
</tr>
<tr>
<td>10.2</td>
<td>Temporary Operation</td>
<td>73</td>
</tr>
<tr>
<td>10.3</td>
<td>New Signal Activation</td>
<td>73</td>
</tr>
<tr>
<td>10.4</td>
<td>Single-Point Urban Interchange (SPUI)</td>
<td>73</td>
</tr>
<tr>
<td>10.5</td>
<td>Diverging Diamond Interchange (DDI)</td>
<td>74</td>
</tr>
<tr>
<td>10.6</td>
<td>Continuous Flow Intersection (CFI)</td>
<td>74</td>
</tr>
<tr>
<td>11.0</td>
<td>Questions?</td>
<td>75</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Standard Signal Equipment</td>
<td>A.1-1</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Contact List</td>
<td>A.2-1</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Information and Downloads</td>
<td>A.3-1</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Procurement Sample Signal Plan and Documents</td>
<td>A.4-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1.1 – UDOT Signal Design Organization Chart .. 2
Figure 2.1.1 – Title Block Example ... 10
Figure 3.1.1 – 80-foot to 85-foot Mast Arm Foundation Details .. 18
Figure 3.2.1 – Traffic Signal Heads and Symbols ... 21
Figure 3.2.2 – Ball Cap Style Visor .. 22
Figure 3.2.3 – Tunnel Style Visor ... 22
Figure 3.2.4 – Example Signal Head Placement for Single Thru Lane without Protected Left- Turn Phasing ... 24
Figure 3.2.5 – Example Signal Head Placement for Single Thru Lane with Protected Left-Turn Phasing ... 25
Figure 3.2.6 – Example Signal Head Placement for 2 or More Thru Lanes 26
Figure 3.2.7 – Left Turn Yield on Flashing Yellow Arrow (RS10-21ex) 27
Figure 3.2.8 – Example Signal Head Placement for Dual Left-Turn Lanes 28
Figure 3.2.9 – Example Signal Head Placement for Right-Turn Overlap Phasing 29
Figure 3.2.10 – Example Signal Head Placement for T-Intersections 30
Figure 3.4.1 – Example Mast Arm Street Signs .. 34
Figure 5.1.1 – Example Pedestrian Signal .. 39
Figure 5.2.1 – Example HAWK .. 39
Figure 5.3.1 – Example Flashing Beacon ... 40
Figure 5.4.1 – Example Post Mounted Beacon ... 40
Figure 6.1.1 – Radar Detection Zones .. 42
Figure 6.1.2 – NEMA Phase Numbers .. 43
Figure 6.2.1 – Radar Stop Bar Detection Area .. 45
Figure 6.2.2 – Radar Stop Bar Detection Placement Options ... 46
Figure 6.2.3 – Example RADAR Sensor Placement - Skewed ... 47
Figure 6.2.4 – Radar Dilemma Placement Options ... 49
Figure 6.3.1 – Typical Loop/Wireless Sensor Placement ... 53
Figure 6.8.1 – Typical Mast Arm Components ... 56
Figure 7.1.1 – Side Mounted Advanced Warning Signal .. 58
Figure 7.1.2 – Overhead Static Advanced Warning Signal Sign ... 59
Figure 7.1.3 – Overhead Blank-out Advanced Warning Signal Sign 59
Figure 9.2.1 – Signal Circuit Cable Example ... 63
Figure 9.2.2 – Pedestrian Circuit Cable Example .. 64
Figure 9.3.1 – Lighting Circuit Cable Example .. 65
Figure 9.4.1 – Push Button Circuit Cable Example ... 66
Figure 9.4.2 – RADAR Detection Circuit Cable Example ... 68
Figure 9.5.1 – Conduit Placement Example .. 70

LIST OF TABLES
Table 3.1.1 – Mast Arm Pole and Foundation Requirements .. 17
Table 9.5.1 – Cable Cross-sectional Area .. 69
Table 9.5.2 – Conduit Capacity ... 69
1.0 OVERVIEW & CONSIDERATIONS

The Traffic & Safety Division of the Utah Department of Transportation has prepared this guideline as a tool for uniform understanding of the signal design process. The purpose is to consolidate the current design standards and practices into a single reference point to help foster accurate, efficient, and consistent signal designs.

This guideline is intended to provide general design instruction to be applied in the signal design process. Every intersection will present a unique set of challenges and require a customized design. It is up to you, the designer, to apply sound engineering judgment, with the help of the project team, to provide an optimal design within your project’s scope, schedule, and budget.

All design and construction work will follow the latest version of the UDOT Standard Specifications & Drawings, which will take precedence over any information presented in this guideline. This guideline will be updated on a regular basis. Check the UDOT website to ensure these Guidelines are the latest version.

1.1 UDOT DESIGN PROJECT ORGANIZATION

All UDOT design projects require coordination with various individuals within and outside the Department. This guideline specifies multiple individuals to be coordinated with for various needs throughout the signal design process. The Organization Chart shown in Figure 1.1.1 shows relevant positions related to traffic signal design and where the position falls within UDOT’s Organization structure. The Project Definition Document (PDD) will define the specific project team and the relevant individuals in the positions shown in the chart. In general, the designer will route coordination through the UDOT Region Project Manager (PM) and under the Region PM’s direction will coordinate with Region Staff, the Traffic Operations Center (TOC), and with Central UDOT Traffic & Safety.
1.2 Signal Warrants

Central Traffic & Safety warrants traffic signals throughout the State. Signal warrant documentation includes a warrant memo with the current directional volume counts including peak hour volumes, warrant analysis, and a field warrant memo with scope outline. Not only do all signals require warrants, but left-turn phasing at signalized intersections requires additional warranting criteria. These criteria are found in the appendix. The warrant information should be presented to the designer before the kickoff meeting. If this information was not provided, contact the Region Project Manager.

1.3 Signal Actuation

Design all intersections as fully actuated unless directed otherwise by Region Signal Engineer. Some signalized intersections are coordinated with other signalized intersections on the same corridor. UDOT’s preferred actuation signal systems is through RADAR detection. Pavement induction loops may also be used for actuation only where they can be installed in the pavement without pavement cutting. Various actuation devices exist on UDOT facilities. They should be replaced and upgraded to RADAR as project budget and scope allows. The type of signal actuation system(s) to be implemented will be determined by Region Signal Engineer. See Part 6 for more information on signal detection.
1.4 **Level of Service**

UDOT’s standard is to meet or exceed a Level of Service (LOS) “D” for urban locations and “C” for rural areas. The LOS is based on projected design year traffic volumes. In general, the design year is set at 20 years from the present year. Intersection LOS analysis may be facilitated by using computer programs.

In a number of cases, the desired level of service cannot be achieved with signalized upgrades alone. It may be necessary to add lanes or reconfigure the intersection in order to reach the desired LOS. When it is within the project’s scope to perform these improvements, design the project to the LOS standard stated above. This usually occurs when other funds are combined with signal funds. Often signal funds are used to upgrade the signal equipment or add a new signal to an intersection without changing the intersection’s geometrics. In these cases it may not be possible to reach the desired LOS. Upgrade the intersection as much as possible within the project’s funding and scope.

1.5 **Project Design Criteria (PDC)**

Prepare a PDC form for the project in order to establish the design criteria that will be followed. Prepare the PDC according to the latest guidelines as established in the UDOT Roadway Design Manual of Instruction and the UDOT Design Process Manual. Design criteria are established in the latest adopted applicable AASHTO, FHWA (MUTCD), and UDOT Standards as indicated on the PDC form. Use the PDC form to determine if any substandard criteria are being implemented or perpetuated with the project. These substandard items will need to follow the standard UDOT design exception and waiver procedures and documentation. Complete the PDC early in the process because the design exception and waiver process may take a significant amount of time. Additionally, if the design deviates from other UDOT standards that are not found in the PDC form, a “Deviation from UDOT Standards” document must be submitted and approved.

1.6 **State Furnished Materials**

A significant portion of signal equipment is provided by UDOT as “State Furnished Materials.” Refer to the State Furnished Items Form for the complete list of state furnished items. Part of the design process is determining the state furnished materials that will be needed. Periodic submittal (at each milestone) is required so that future stock needs can be forecasted. Request reviews from the Region Signal Engineer prior to submitting the form. The final state furnished materials should be ordered as soon as possible and usually by the final design. Fill out the State Furnished Items form and submit as instructed on the form. There is a separate form required to order ATMS state furnished items. If the signal project includes ATMS state furnished items, complete the ATMS form and submit it for review to the ATMS Project Manager. Some special orders require 90 days, please order equipment accordingly. Plan on a delay of about 4 to 6 weeks for steel powder coating.
1.7 BICYCLES

UDOT encourages multimodal use of its transportation facilities. Check Utah Collaborative Active Transportation Study (UCATS) and mapping resources such as UDOT’s Uplan for planned/existing bicycle routes and facilities. Bicycle detection and pavement markings may need to be implemented as part of the traffic signal at intersections where bicycle facilities exist or there is a high volume of bicycle traffic. If radar detection is used, typically, no additional bike detection is needed. Coordinate with the Region Signal Engineer and the Central Traffic & Safety Traffic Signal Engineer to assess these needs.

1.8 PEDESTRIAN FACILITIES

Crosswalks
Provide pedestrian displays and push buttons at all signalized intersections unless the pedestrian movement is prohibited. Crosswalks, whether marked or not, exist at all intersections. Provide signing if a pedestrian crossing is prohibited. For pedestrian route continuity, coordinate with the Region Traffic Operations Engineer to determine where crosswalks should be placed.

Pedestrian Signals
UDOT has set forth Pedestrian Guidelines to determine when to install pedestrian signals. These signals can be roadside flashing beacons, pedestrian hybrid beacons, and pedestrian traffic signals (Refer to SL-series Standard Drawings for more information). Pedestrian signals are provided for safer pedestrian crossings and visibility to vehicles, and are not necessarily related to motorized vehicle level of service. This guideline provides appropriate information for the design of pedestrian hybrid beacons, pedestrian traffic signals, and flashing beacons because they use the same design standards, equipment (other than actuation), and construction requirements as traditional traffic signals.

Pedestrian Access Ramps
Pedestrian access ramps are required at all legal crossings to provide accessibility from the raised sidewalk down to the roadway surface. All new sidewalks must comply with Americans with Disabilities Act Access Guidelines (ADAAG) regulations. Existing ramps that do not meet the current standards must be retrofitted to do so unless instructed otherwise by the Region Traffic Operations Engineer. The Region Traffic Operations Engineer may also specify audible pedestrian push buttons based on pedestrian demographics and the needs of the intersection. Refer to the latest version of PA Series UDOT Standard Drawings and Standard Specifications and the Pedestrian Access Ramp Manual.

1.9 LIGHTING

Highway lighting is required at all signalized intersections unless otherwise approved by the Region Traffic Operations Engineer, the extent of which depends on several
site specific conditions. Part 4 of this guideline covers this topic in more detail.

1.10 **Signal Interconnect (ATMS)**

Connect the traffic signal to the existing ATMS network unless otherwise approved by the ATMS Project Manager. UDOT has one of the most advanced traffic signal systems in the country; interconnection allows the Traffic Signals Operations Group to optimize signal timing and operations, collect valuable performance data, monitor operations, troubleshoot problems, and respond quickly to maintenance issues. All signals need to be part of the network. The preferred interconnection method is to integrate the signal into the ATMS fiber optic infrastructure. If fiber is not within a reasonable distance, the signal can usually be connected by ethernet radio. If that is not possible, the design should include ATMS equipment and conduits for future interconnect, including future fiber runs. Integration of the signal equipment into the ATMS network is typically accomplished by an integration consultant; the project budget and schedule should anticipate this work. Coordinate with the Region Project Manager, Region Signal Engineer, and ATMS Project Manager regarding interconnection and ATMS requirements at the beginning of the design process.

1.11 **Local Involvement**

UDOT’s traffic signals are often installed at the intersection of state routes and local streets or installed within city boundaries. Coordination needs to take place with the local officials in order to inform them of the upcoming signal project and to collect additional information about the intersection. The local official often has intimate knowledge of the weaknesses and limitations of a given intersection and can be a key asset to improve UDOT’s transportation facilities. Many cities have emergency vehicles equipped with emergency pre-emption devices. If this is the case, pre-emption detection equipment will need to be incorporated into the signal design. Coordinate the local government’s intersection needs with the Region Project Manager and Region Traffic Operations Engineer to assess and, potentially, implement needed improvements into the signal design, such as emergency pre-emption. The cities will need to furnish all pre-emption equipment; the contractor will furnish the pre-emption wire and UDOT personnel/contractors will install the equipment.

1.12 **Site Visit**

Each intersection has unique characteristics that must be considered for appropriate signal design. When designing a traffic signal, a site visit is recommended during the scoping/kickoff meeting to determine the existing conditions. Return visits may be necessary during the plan development to verify the design conformity. During the visits, consider taking digital photographs and/or video that can be used for meetings, as a record for existing conditions, or to answer questions back at the office. In addition to applicable UDOT personnel and maintenance staff, invite local government and appropriate utility company representative(s) to meetings and conversations.
Existing Facilities

Some designs may require reuse of existing traffic signal facilities such as conduit, foundations, poles, signal heads, cabinet, etc. Make note of the condition of these items. Consult with the Region Signal Maintenance Supervisor to determine what items need replacement. Evaluate the existing condition of the facilities to determine if they are adequate for re-use. Evaluate the existing pedestrian access ramps and pedestrian facilities for compliance with ADAAG. Review existing actuation devices. Observe traffic and pedestrian operations to assess potential needs that have been previously overlooked.

Right-of-Way

Locate right-of-way lines and determine if the signal design will fall within the available area. Right-of-way or easement purchases will be on the project’s critical path, therefore pole, cabinet, and junction box locations should be determined as soon as possible. The location of the right-of-way must be indicated on signal plans.

Utilities

Contact Blue Stakes to obtain utility company contact information and request utility maps from each of the companies in the area. Locate existing utility appurtenances in the field (valves, manholes, poles, etc) that correspond with mapping to more accurately determine utility locations. If design components appear to be in conflict with certain overhead or underground utilities, then another site meeting with utility representatives may be required. Pothole utilities as needed to verify locations in underground conflict areas. If the project is under the state procurement contract, then potholing should not be performed during the design phase. The contractor is required to pothole utilities during the construction phase and will make field adjustments to the design, as necessary.

ATMS Facilities

Connecting traffic signals to the existing ATMS facilities and extensive fiber network ensure that UDOT offers a world class signal system. When researching the utility information there are three steps that are required for correctly locating UDOT ATMS networks:

1. Notify Blue Stakes to obtain a UDOT utility contact person,
2. Contact the UDOT Fiber Manager (see Appendix 2 Contact List), and
3. Obtain fiber plans and as-builts on the UPlan UDOT Map Center.

Once this information is gathered, contact the Region ATMS Project Manager (see Appendix 2 Contact List) and request an on-site ATMS field review. The Region ATMS Project Manager will set up the meeting and include the necessary staff.

Power Service Connection

Coordinate with the Region Utility Leader (see Appendix 2 Contact List) to schedule a field meeting with the serving power company to verify or identify the power source type and location. Refer to Part 8 for additional information on power service
Connections.

Alignment, Clear Zone & Lateral Offset
Check applicable sight lines to assure that available sight distances meet standards for all approaches and turning movements. Verify that motorists can see pedestrians in crosswalks and pedestrian access ramps. Check clear zone and lateral offset distances to roadside and median hazards and verify conformance to AASHTO and UDOT Standards. A mast arm pole foundation should be placed behind the curb and gutter and meet lateral offset requirements.

Slopes & Grades
Make note of slopes and grades both on the road and behind curb & gutter where foundations and junction boxes will be located. Sloped areas behind curb can affect foundation design and elevation such that an upslope may cause the mast arm to be too high and a downslope may require additional foundation height beyond the standard depth. Grades in the roadway such as crowns, overlay buildup, or super-elevations may affect signal head clearances.

Drainage
For existing intersections, evaluate the drainage to ensure that no water is ponding in the intersection and determine if water is ponding at the bottom of pedestrian ramps. If ponding is a problem, then determine what measures can be taken to mitigate these issues.

1.13 Project Delivery

Two main options are available for constructing UDOT traffic signals: standard project advertisement, or State Procurement Contract. Prior to assigning a designer, the Central Traffic & Safety Design Engineer, Region Traffic Operations Engineer, and Region Signal Engineer should review the proposed project to determine which type of project delivery method should be used. They will also determine if Central Traffic & Safety Project funds are to be used or if a larger project should be submitting for funding by the region.

Advertisement
Advertised projects include design-bid-build, Construction Manager General Contractor (CMGC), and Design Build project delivery methods. This is the standard project delivery method for most UDOT projects. This method should be applied when the traffic signal project consists of one or more intersections, and may require right-of-way adjustments, utility relocations, roadway widening in excess of the procurement maximum contract amount ($175,000 in construction costs per intersection), or have other significant impacts. Federal projects must follow the advertisement project delivery process. Advertised projects will require complete bid documents, PDBS entries, and an advertisement checklist. The UDOT Plan Sheet Development Standards contain instructions for and examples of advertised signal plans.
State Procurement Contract

For time-critical projects or straight-forward traffic signal installations, UDOT can rely on a State Procurement Contract. This alternative for construction of signal projects should be applied to intersections with minimal issues. Signal procurement projects do not resolve major problems with drainage, grading, roadway rehabilitation or widening, utility relocation, landscaping, and structures. The procurement contractors are electrical contractors and have been selected based on their electrical experience. Most work is expected to fall within their area of expertise.

The contract is limited to signal projects that are $175,000 or less in construction costs (as of 2015). Contact Central Traffic & Safety for signal procurement bid item prices to estimate in place of the PDBS estimate. It is important to note that procurement contractors are paid for the work they actually perform rather than quantities from an engineer’s estimate that was prepared in the design phase. This virtually eliminates the need for change orders. In procurement, the purpose of preparing an estimate in design is to help ensure the project will fall within allocated funding.

The project will require abbreviated design plans with minimal special provisions, however the process is not as formal as advertisement and adjustments can be made during construction. For state procurement contracts, adjust the design efforts to be commensurate with the abbreviated plan set and use standard procurement bid item names. Generally, procurement plans sets do not need right-of-way, survey control, typical sections, horizontal alignments, summary sheets, and maintenance of traffic sheets. An example of a procurement plan set can be found in the appendix. The pre-selected procurement contractors have installed many traffic signals and are planning on working out some details in the field and do not need all the details provided to them since they have such extensive experience. However, be sure to work out all critical design elements during the design phase in order to avoid costly delays during construction.

Signal procurement projects usually have a limited budget, scope, and schedule whose primary purpose is to install or upgrade a signal. Throughout the initial stages of the design the scopes of these projects have a tendency to expand due to the various needs of the intersection. Coordinate project needs with the Region Project Manager and prioritize as necessary. Attempt to limit the scope as much as possible to keep the project under its planned budget and schedule. If the project has more necessities than the budget and schedule allow, then communicate these needs early in the design process.

Check with the Central Traffic & Safety Design Engineer or the Region Project Manager for direction regarding which type of construction package you will be preparing prior to scoping a project. The signal design process follows UDOT’s standard **Project Delivery Network**. The actual project flow chart may vary depending on the size and scope of the project.

Environmental clearance and design exceptions (if needed) are necessary on
procurement projects. Even though the state procurement delivery method allows for abbreviated plans and design efforts it does not bypass the Environmental and Design Exceptions process. Environmental clearance through an Environmental Document, usually a Categorical Exclusion, must be obtained before construction begins. If there is a design exception, waiver, or deviation from UDOT standards it must be documented and approved through the same process as is required with an advertised project.

Survey / Base mapping
In order to further streamline simpler projects, the State Procurement Process may not require a full field survey with existing topography base mapping. In these cases the signal may be designed using to-scale aerial photography as the base map.

1.14 Quality Control / Quality Assurance

Regardless of the project delivery method, the latest UDOT Quality Control/Quality Assurance Procedures or an alternative approved QC/QA plan must be followed with associated required documentation. The checklists, checkprints, and QA audit form will need to be uploaded to ProjectWise and properly attributed for the QC/QA process to be considered complete.

Comment Resolution Form
A key component of the QC/QA process is the Comment Resolution Form. The form can be obtained from UDOT’s QC/QA page link above. Record all the comments and designer responses on the form. Note all comments made during site visits, review meetings, etc. Have one comment resolution form for the whole project so reviewers, managers, auditors, etc can look back and tell how all the comments were addressed and the final design product was developed. Divide the form by milestone reviews (Scoping, PIH, PS&E, etc.).

Maintenance/Preconstruction Site Visit Certification Form
UDOT has added the Maintenance/Preconstruction Site Visit Certification Form to the advertising checklist. Each project must have a site visit with maintenance and fill out the form. The maintenance staff must sign the form. The purpose of the form is to “Ensure that a site visit and better communication occur between a project’s design team and the maintenance stations affected by the project. Maintenance knows the roadway best and their on-site input for projects is crucial to fulfilling two of UDOT’s strategic goals: preserve infrastructure and zero crashes, injuries, and fatalities.”

2.0 GENERAL PLAN INSTRUCTIONS

Follow the latest UDOT Plan Sheet Development Standards found on UDOT’s CADD Downloads Website.

The following are general instructions to be used as a guideline in laying out plan sheets.
Signal sheets should be in a common scale that best suits the intersection.

2.1 **Title Block**

The four lines in the title block contain the following information:

The **first line** of each title block identifies the project name.
The **second line** of each title block identifies the project location
The **third line** of each title block is the project number and PIN
The **fourth line** identifies what information the sheet contains.

Fourth line examples:
ROADWAY
SIGNAL
SIGNAL CIRCUIT

![Figure 2.1.1 – Title Block Example](image)

2.2 **Plan Sheet Numbering**

Sheet numbering includes a letter code that identifies the type of sheet. The appropriate code letter is placed before the consecutive sheet numbering, e.g., RD-01, RD-02, RD-03, etc. Include only codes applicable to the signal project and eliminate all others that are not needed.

Sheets beginning with a “1” (e.g. title, 1-A Index to Sheets, 1-B Abbreviations and Legend, etc.) do not require a sheet identification code.

Follow the latest UDOT CADD Standards Guidelines when setting up a plan set. A signal project is different from a regular design project in that it is organized by intersection. Therefore, all plan sheets for the first intersection will be identified as “-01A”, such that sheets would be ordered UT-01A, RD-01A, SS-01A, SG-01A, etc. The second intersection in the plan will follow as “-01B”, as in UT-01B, RD-01B, etc.

Group all sheets beginning with “1”, TS, DT, SM and TC together at the beginning of the plan set and show in the order below.

<table>
<thead>
<tr>
<th>ID Code Letter</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title</td>
</tr>
</tbody>
</table>
Abbreviations and Legend

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>Horizontal Control</td>
</tr>
<tr>
<td>CR</td>
<td>Cross Reference</td>
</tr>
<tr>
<td>SC</td>
<td>Survey Control</td>
</tr>
<tr>
<td>TS</td>
<td>Typical Sections</td>
</tr>
<tr>
<td>DT</td>
<td>Details – which may include minor structures if no structure number is required</td>
</tr>
<tr>
<td>SM</td>
<td>Summary (not for signal summaries)</td>
</tr>
<tr>
<td>RD</td>
<td>Roadway</td>
</tr>
<tr>
<td>RP</td>
<td>Roadway Profile</td>
</tr>
<tr>
<td>RMV</td>
<td>Removal</td>
</tr>
<tr>
<td>UT</td>
<td>Utility/Topography</td>
</tr>
<tr>
<td>RR</td>
<td>Railroad</td>
</tr>
<tr>
<td>GR</td>
<td>Grade</td>
</tr>
<tr>
<td>DR</td>
<td>Drainage (Drainage Details may be placed on DRDT or DT sheets)</td>
</tr>
<tr>
<td>IS</td>
<td>Irrigation</td>
</tr>
<tr>
<td>EC</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>LS</td>
<td>Landscape</td>
</tr>
<tr>
<td>WM</td>
<td>Wetland Management</td>
</tr>
<tr>
<td>SS</td>
<td>Signing (Sign Details may be placed on SSDT sheets or DT sheets)</td>
</tr>
<tr>
<td>SP</td>
<td>Striping</td>
</tr>
<tr>
<td>SG</td>
<td>SIGNAL – SG-xx for Signal plan sheets
SG-Sxx for Signal Schedule</td>
</tr>
</tbody>
</table>

When a project has more than one signal intersection, individual intersections are numbered with a letter at the end, such as the first intersection would be: SG-01A thru SG-09A and the second intersection would be SG-01B thru SG-09B, etc.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>Lighting (use LTDT for lighting detail sheets)</td>
</tr>
<tr>
<td>ATMS</td>
<td>Advance Traffic Management System – ATMS-xx for ATMS plan sheets
ATMS-Sxx for ATMS Schedule</td>
</tr>
<tr>
<td>RW</td>
<td>Right of Way</td>
</tr>
</tbody>
</table>

2.3 Plan Sheets

For procurement plans sets it is important to remember to keep the number of plan sheets to a minimum. Use the plans to convey the most pertinent design information to the contractor. Keep in mind that the contractors on the procurement contract are very experienced signal installers and will often adjust the design in the field based on the conditions they encounter. An overabundance of plan sheets and design effort is a waste of the department’s limited signal funding.
Every project will have a title sheet (Sheet 1). Often, especially on procurement projects, the index to sheets table will be placed on the title sheet. Otherwise the Index to Sheets will be made its own sheet (1-A). On procurement projects, there may be a short list of limitations to convey to the contractor. These limitations should be placed on the title sheet as well. If the limitations are extensive, then a 00555M spec could be prepared and included with the plans. No other special provisions are typically needed with a procurement project. Place the intersection ID Number on the title sheet. This number can be obtained from the Region Signal Engineer.

List the applicable supplemental drawings with the index to sheets. Depending on the size and scope of the signal project there may also be an abbreviations and legend sheet, horizontal control sheet(s), cross reference sheet(s), and/or survey control sheet(s). Procurement projects do not typically include summary sheets or maintenance of traffic (MOT) sheets. Summary sheets are required on advertised projects.

Depending on the project scope and delivery type, the following plan sheet series may be required for every signal location in the project:

Utilities (UT)
- Identify the Topography, Utilities, Right-of-Way, existing signal pole locations, existing signal equipment, and items to be removed, reconstructed, or relocated. Check overhead clearance for mast arms and lighting extensions. Utilities can be located on other sheet types such as Roadway.

Roadway (RD)
- Include roadway related items such as sidewalks, ped ramps, pavement work, flatwork, etc. Also include roadway related removals. If the removals are extensive, they can be separated out and placed on Removal (RMV) sheets. Procurement projects usually do not have enough roadway and removal work to necessitate the separation of these sheets.

Signing and Striping (SS)
- Include all pavement markings and material types, signing, and lane widths. Label the striping taper rates. The signing and striping design may be placed on the Roadway (RD) sheets.

Signal (SG)
- Describe the traffic signal design. Include the
length of the mast arms, the location of the traffic and pedestrian signal heads in relation to the lane lines. Identify light pole and luminaire locations. Show utilities that may conflict with pole placement. Identify induction loop or RADAR placement. Include a phasing diagram, if applicable. If there is an existing signal show the existing poles to be removed with a note. Verify the constructability between the new and old signal equipment.

Signal Circuit (SG)
(See Appendix for Sample Plan)

Combine or separate the various circuit diagrams for clarity. In general, all the circuit diagrams can be shown on a single sheet. Describe the layout of signal circuits by showing the following for each type of circuit (as applicable):

Signal Circuit: poles, mast arms, heads, signal conduit size and number, junction boxes, cabinet, underground service pedestal, power conduit, signal wiring information, and power source.

Pedestrian/Push Button: poles, ped heads, ped conduit size and number, push button conduit size and number, junction boxes, and wiring information.

Future Use Conduit: poles, future use conduit size and number, junction boxes, cabinet, underground service pedestal, and wiring (pull wire) information.

Lighting Circuit: poles, luminaires, lighting conduit size and number, junction boxes, cabinet, underground service pedestal power conduit and wiring, and lighting wiring information.

Detection Circuit: poles, mast arms, luminaires (if detection is mounted on luminaire), detection devices, detection conduit size and number, pre-emption circuit, junction boxes, cabinet, and wiring.
Each existing utility should be labeled once per utility per sheet. Utility labels include the utility owner, utility size, material, type, and SUE quality level. For example, a 10" high-pressure gas line owned by Questar with a SUE quality level B would be labeled “Questar 10" HP Gas, QL-B.”

The SUE quality level relates to the expected accuracy of the locations on the utility lines based on how the locations of the lines were determined. The ASCE established the following quality levels in the Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data:

Quality Level D. QL-D is the most basic level of information for utility locations. It comes solely from existing utility records and mapping or verbal recollections.

Quality Level C. QL-C involves surveying visible above-ground utility facilities (e.g., manholes, valve boxes, etc.) and correlating this information with existing utility records (QL-D information). This level is sufficient for all signal procurement projects. (Approval is needed from the Signal Program Manager before any SUE work is estimated beyond this level from a consultant.)

Quality Level B. QL-B involves the application of appropriate surface geophysical methods to determine the existence and horizontal position utilities. QL-B data is often obtained by surveying bluestaked utility lines.

Quality Level A. QL-A, also known as "potholing," is the highest level of accuracy presently available. It provides information for the precise plan and profile mapping of...
underground utilities through the actual exposure of underground utilities, and also provides the type, size, condition, material and other characteristics of underground features. Exposure is typically achieved through hand digging or Hydro-Vacuuming. (*All contractors are required to do this before any underground work. Essentially, potholing in design has to be re-done in construction.*)

For procurement plan sets, it is not necessary to obtain QL-A utility locating during design. QL-C and QL-D are sufficient. The contractor will perform potholing during construction to avoid utility conflicts. The placement of the signal equipment and other improvements can be field adjusted during construction.

For design-bid-build projects, QL-B and QL-A may be necessary. If the QL-C and QL-D mapping indicate that a utility conflict may be present then higher quality SUE, such as potholing, will be necessary to determine if there is a conflict. In cases where a conflict is found the design will need to be adjusted or the utility relocated. Coordinate with the Region Project Manager and Region Utility Engineer to determine what type of SUE efforts should be employed and how to address utility conflicts.
3.0 TRAFFIC SIGNAL DESIGN

3.1 SIGNAL POLES, MAST ARMS, AND FOUNDATIONS

Pole Numbering
Pole numbering starts with the northwest corner pole as “P1”, regardless of the intersection orientation on the sheet, and continues clockwise around the intersection. Each pedestrian signal pole or supplemental traffic signal pole will count in the numbering and should be labeled likewise.

Pole Placement
Signal poles should be located as close to the center and back of pedestrian ramps as possible, considering underground and overhead utilities. Do not place two signal poles within 10 feet of each other, if possible. Push buttons must be no greater than 10 feet from the point where the pedestrian access ramp centerline meets the top back of curb (TBC) line. If this 10-foot distance can’t be met, a supplemental pedestrian pole may be required. The push button must also be placed above a turn space and not a ramped section. This consideration may affect pole placement. If no pedestrian access ramps are required, place the pole a minimum 6 feet from TBC.

Overhead clearance is very important where 30-foot or 40-foot luminaire extensions are used. Maintain minimum clearance from primary conductors to luminaire or luminaire arm. Contact the local power supplier for required safe working clearances.

Foundation Elevation
On projects that require survey, specifying the correct foundation elevation will likely be critical to assuring proper signal head height in the final constructed product. Visit the site and make note of any unusual slopes where foundations will be placed, and any unusual superelevations or high crowns in the roadway. If this will be a new pavement section, compare TBC elevation to roadway centerline elevation before specifying the foundation elevation.

To assure the proper combination of signal head and foundation height, as a general guideline, set the foundation elevation at the roadway centerline elevation, at a 2% slope higher than the adjacent TBC, or at the same elevation as back of sidewalk, whichever is highest. Should this result in more than 1 foot of foundation above grade, add a special provision that requires 12 feet (or deeper for longer mast arms) of the foundation be below grade and an appropriately lengthened rebar cage. It is preferred to set the top of the foundation flush with the finished grade. The foundation may be set a maximum of 18 inches above the finished grade. If the pole foundation is within the roadway clear-zone, it needs to be 4 inches or less above finished grade to the top of the base plate or it becomes a roadside hazard requiring a clear zone waiver.

Set the foundation elevation to ensure that the signal head closest to the highest point of the roadway surface is a minimum of 18.5 feet and maximum 19.5 feet between the
bottom of the signal head assembly and the finished roadway surface. The other signal heads will be set to the same bottom elevation. Be sure to consider all directions of traffic.

Foundation and Mast Arms
Standard mast arms come in 5-foot increments from 30 feet to 85 feet. Additionally, UDOT has differing signal pole type, size, bolting and foundation requirements, depending on mast arm length. The signal pole and foundation specifics are categorized by mast arm length as shown in Table 3.1.1 below. Signal Pole foundation details for 80-foot to 85-foot mast arms can be seen in Figure 3.1.1 below.

Table 3.1.1 – Mast Arm Pole and Foundation Requirements

<table>
<thead>
<tr>
<th>Mast Arm Length</th>
<th>Signal Pole (Type)</th>
<th>Foundation (ft dia x ft deep)</th>
<th>Number of Bolts</th>
<th>Bolt Circle (dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 ft to 55 ft</td>
<td>Type A (curved)</td>
<td>3 x 12</td>
<td>4 Bolts</td>
<td>23-inch</td>
</tr>
<tr>
<td>60 ft to 65 ft</td>
<td>Type B (straight)</td>
<td>3 x 12</td>
<td>4 Bolts</td>
<td>23-inch</td>
</tr>
<tr>
<td>70 ft to 75 ft</td>
<td>Type B (straight)</td>
<td>3 x 14</td>
<td>4 Bolts</td>
<td>23-inch</td>
</tr>
<tr>
<td>80 ft to 85 ft</td>
<td>Type C (straight)</td>
<td>4 x 14</td>
<td>6 Bolts</td>
<td>26-inch</td>
</tr>
</tbody>
</table>
It is recommended to orient mast arms perpendicular to lane striping on non-skewed and slightly skewed intersections. For intersections with more pronounced skewing the orientation of the mast arms will need to be designed to optimize detection (see Vehicle and Pedestrian Detection Part 6 and placement of signal heads.

General Pole and Mast Arm Design Notes

- When specifying dual mast arms, the common signal pole type has a maximum arm length of 45 feet. Dual mast arms of up to 55 feet can be used with
special-order arms and signal pole. Refer to Appendix 1 for more information.

- Types A and B signal poles require the same 23-inch anchor bolt circle with four anchor bolts. When specifying a 70- or 75-foot mast arm, the foundation will require a depth of 14 feet. Refer to Standard Drawing SL 2A for details.

- When specifying an 80- or 85-foot mast arm, the foundation will require six anchor bolts on a 26-inch bolt circle (4-foot diameter foundation), extra depth, and reinforcing steel. See Figure 3.1.1 and Standard Drawing SL 2B for details.

- When specifying a 25-foot mast arm, note that it will be a 30-foot arm field cut to 25 feet.

- Mast arms for approaches with future projected left turn warrants should have extra length for future placement of Type III or Type VI signal heads.

- An adapter plate is needed when an existing signal pole foundation is used with a different anchor bolt pattern. (Ask the Region Signal Engineer to verify.)

- The maximum loading for mast arms is shown on the SL Series of the Standard Drawings. Do not exceed the maximum loading for the mast arms without approval as indicated on the Standard Drawings.

- Specify a pole cap for all signal poles that do not require a luminaire extension.

Non-Mast Arm Poles

Often, the mast arm pole is not in a location where a ped head, a push button, or near side signal head is needed. In these situations, a 5.5-foot, 11-foot, or 15-foot pole can be used. These poles have a smaller 24-inch diameter, 36-inch deep foundation. The 5.5-foot pole is used for pedestrian push buttons only. The 11-foot pole is used for pedestrian push buttons, and pedestrian heads. The 15-foot pole is used for pedestrian push buttons, pedestrian heads, near-side signal heads, and detectors.

3.2 **Signal Heads**

Proper placement of signal heads over the roadway dictates the length of mast arm used and, to some extent, the location of the pole foundation. Signal heads are to be installed with mounting brackets and louvered back plates (except Type V heads). Retroreflective tape must be installed on signal head back plates that are constantly illuminated and always in use (such as traffic signals at intersections). Signal heads on Reduced Speed School Zones, flashing beacons, freeway ramp meter assemblies, or pedestrian hybrid beacon assemblies that are not always in use must not include retroreflective tape to avoid drawing driver attention when they are not activated.
Signal Head Types

Ped Head: This signal head must be countdown style in all applications.

Type 0: One-section head with red, yellow, or green indications. It can be a ball or arrow indication.

Type I: Three section head with red, yellow, and green round ball indications. This head is typically used for thru movements.

Type II: Three section head with a red round ball indication, plus yellow and green arrow indications. This head is typically used at T-intersections with no pedestrian conflicts.

Type III: Three-section head with red, yellow, and green arrows. This head is used for protected-only turn movements.

Type IV: Four-section head with red, yellow, and green round ball indications, plus one green arrow in the lowest section. This head is typically used for split phases and through left turn lanes.

Type V: Five-section head with red, yellow, and green round ball indications, plus one yellow and one green arrow. This head can be either stacked vertically or set in a “doghouse” type formation, and is typically used for protected/permissive turn movements on existing signals that lack adequate arm length for a Type III or Type VI head.

Type VI: The “Flashing Yellow Arrow” four-section signal has one red arrow, two yellow arrows, and one green arrow in a vertical stacked formation. This head is used for protected/permissive left turn movements. The green arrow provides a protected left turn from oncoming traffic while the lower yellow arrow will flash to indicate that left-turning traffic must first yield to oncoming traffic and pedestrians before turning. The upper yellow and red arrows are steady and function in their traditional manner.

Type VII: Four-section head with two adjacent red, one yellow, and one green round ball indications set in a “T” type formation. This head is used when increased emphasis to the red indication is desired.

Hybrid Beacon: This head is used for pedestrian hybrid beacon crosswalk signals. Three-section head with two adjacent red and one yellow flashing ball indications set in an inverted triangle type formation. It is associated with the Hybrid flashing beacon assembly which consists of two hybrid beacons on either side of mast arm mounted sign.
Signal Head Visors
Each section of the signal head features a visor to reduce sun glare on the signal indication. UDOT uses two different styles of visors. The more desired style is called the “ball cap” or “cut-away” visor (see Figure 3.2.2) because it is less likely for snow to accumulate in front of the indication. This style should be used for most applications. However, ball cap visors are not recommended for skewed intersections as this might cause confusion if signal indications are visible to unintended drivers. The second style is the “tunnel” variety (see Figure 3.2.3). It surrounds the indication more completely except for a small section at the bottom of the circle. Historically, tunnel visors were more common on UDOT signal heads but now they are advised for skewed intersection applications or to match existing signal heads that will remain at an intersection.

Figure 3.2.1 – Traffic Signal Heads and Symbols
Traffic Signal and Ped Head Placement

- Provide at least two signal heads for the thru movement. If there is no thru movement, then provide two signal heads for the major movement. Every intersection leg must have at least two red ball indications. If there are no thru movements, the major and minor turn movements should have type I or type II signal heads, depending on pedestrian conflicts.
• Place the signal heads no closer than 8 feet apart. Refer to Standard Drawing SL 1A, 1B, and 1C for standard head mounting locations. In cases where a signal head is over each lane, center signal heads over lanes.

• Do not locate a signal head over a shoulder stripe or curb line unless it is for the right turn lane or an advanced warning signal.

• Do not center a Type I or Type V head over a left turn lane.

• Note that signal heads will be mounted on bracket mounts to mast arms per Standard Drawings SL 3B and 3C.

• The signal head closest to the highest point of the roadway surface must have a minimum of 18.5-foot and maximum 19.5-foot clearance from bottom of signal head assembly and the roadway surface. If an 18.5-foot clearance is not attainable, a 17.5-foot minimum is allowed by written approval from the Region Traffic Operations Engineer. Level the remaining signal heads to the same bottom elevation. Mount the signal assembly such that half or more of the signal head assembly is below the mast arm. Signal heads mounted too far over the mast arm tend to get twisted by the wind. If the signal is on a high load route contact the Region Traffic Operations Engineer for clearances.

• Signal heads should be located a minimum 50 feet and maximum 150 feet from the stop bar. A supplemental nearside signal head is required where signal heads are located more than 150 feet from the stop bar, and may also be needed if intersection geometry causes occlusion. Use a 15-foot traffic pole if nearside signal head isn’t placed on the mast arm pole. Although MUTCD allows 180 feet beyond the stop bar before a near side signal head is required, approval from the Region Traffic Operations Engineer is needed to go beyond 150 feet without a nearside head.

• Use a near side signal head when horizontal or vertical curves prevent an approaching vehicle from seeing at least one signal head within the stopping sight distance of the intersection.

• Place ped heads on traffic signal poles in any case where traffic queued at the stop line will not occlude the pedestrian’s line of sight. Otherwise, specify an 11-foot traffic pole to carry both ped head and push button. The push buttons should be installed on a 5.5-foot pedestrian pole when mounting them on the mast arm pole does not meet ADAAG criteria.

• Mount ped heads on the opposite side of the pole from traffic.
LED Modules
Specify LED modules for all traffic and pedestrian signal heads. If intersection has relatively new signal equipment that will remain in service, retrofit the existing heads with new LED modules or salvage the existing to the region. Check with the Region Signal Maintenance Supervisor regarding replacement of existing LED modules. New LED modules for traffic signal heads are state furnished unless otherwise determined by the Region Signal Engineer.

Thru Movement Signal Head Placement Options

- For single lane with no Type III or VI protected left – Place two heads with the leftmost thru signal head 1 to 2 feet to the inside of the double-yellow line. Separate the heads by 8 to 10 feet.

![Plan View](image)

Key Elements
- At least two heads for the thru movement
- Each direction has two red ball indications
- Signal heads no closer than 8 ft apart
- Midpoint between Signal heads centered over lanes
- Signal head not placed over shoulder stripe

Figure 3.2.4 – Example Signal Head Placement for Single Thru Lane without Protected Left-Turn Phasing
For single lane with Type III or VI protected left – Place left thru signal head so that it is at least 8 feet from the protected left head and 8 feet from the right thru signal head.

Figure 3.2.5 – Example Signal Head Placement for Single Thru Lane with Protected Left-Turn Phasing
• Center a signal head over each thru lane even when there is no Type III or Type VI left-turn head.

Figure 3.2.6 – Example Signal Head Placement for 2 or More Thru Lanes

Left-Turn Signal Head Placement Options (when left turn warrants are met – see Appendix 3 for Left-Turn Phasing Guidelines)

• Single Protected Left or Type VI Protected/Permissive Left – Place the signal head regulating the left-turn movement over the center of the opposing left-turn lane. Specify a mast arm mounted “yield on flashing yellow arrow” sign when Type VI signal heads are used. Type VI signal heads are preferred over Type V when a mast arm of appropriate length is available. Whenever Type VI heads are used sign RS10-21ex is required. See Figure 3.2.7 for sign RS10-21ex details.
Figure 3.2.7 – Left Turn Yield on Flashing Yellow Arrow (RS10-21ex)

- Protected/Permissive Left (modification on existing signals) – If a mast arm of appropriate length is not available then place the Type V signal head over the double-yellow line. Specify a mast arm mounted “yield on green” sign (R10-12).
- Dual Left – Place two Type III signal heads centered with each respective turn lane.

Figure 3.2.8 – Example Signal Head Placement for Dual Left-Turn Lanes
Right-Turn Signal Head Placement Options (when approved by Region Traffic Operations Engineer)

- Right Turn Overlap with Type V head – Place the Type V signal head aligned with the solid white line between the thru and right turn lane. The green ball indication takes the place of the Type I head in the thru lane just left of the right turn lane. The right side green arrow will point to the right and show green when the opposing street’s lefts are in the green phase. Specify the mast arm sign R3-4 (No U-turn) for the adjacent/conflicting left/u-turn lane.

- Right Turn Overlap with Type VI head – Place the Type I signal head in the center of the thru lane. Place the Type VI head to be aligned with the center of the right turn lane, this head will hang over the shoulder. Specify the mast arm sign R3-4 (No U-turn) for the adjacent/conflicting left/u-turn lane. In cases where there are dual right turn lanes, install a Type VI signal head centered over each lane.

Figure 3.2.9 – Example Signal Head Placement for Right-Turn Overlap Phasing
T-Intersection Head Placement Options

- Use the proper signal head types based on pedestrian conflicts.

Figure 3.2.10 – Example Signal Head Placement for T-Intersections

3.3 LANE LINES AND STRIPING

Pavement Markings
Establish pavement markings according to the UDOT Standard Drawings. Show lane striping and pavement messages for the intersection and clearly identify the dimensions and distances required for proper installation. Specify the material to be used (paint, tape, or thermoplastic) and confirm with the Region Traffic Operations Engineer. Match existing pavement marking materials unless instructed to do otherwise by the Region Traffic Operations Engineer. Call out any pavement marking removals to avoid motorist confusion once the intersection is open to traffic. Show the existing markings in a gray scale and new striping in full scale (black) on the striping sheets. For clarity and reference, show the final marking configuration in gray scale on the signal plan sheets. If pavement markings are not modified in an area, show the existing markings.

Stop Line
Specify a 12-inch stop line at intersections with standard crosswalks. When there is a school crossing or no crosswalk, specify a 24-inch stop line for better visibility.
Turn Lanes

Width – Provide 12-foot wide left-turn lanes unless an alternate width is approved by Region Traffic Operations Engineer. If this is not possible, discuss the issues with the Region Traffic Operations Engineer. Provide a minimum 16-foot receiving lane width for single left-turn movements (measured from the tangent section of lip of curb & gutter). Provide 30 feet combined receiving lane width for dual left-turn movements. Maintain the receiving lanes for 50 feet before tapering back to normal lane widths. Provide minimum 10-foot wide right-turn lanes or as established in the PDC document.

Alignment – Align the opposing left-turn lanes through an intersection to enable the driver to see past the vehicle in the opposing left-turn lane. If there is no opposing left turn movement install a striped or raised median. Dedicated turn lanes should not continue through the intersection as thru lanes. Turn lanes should not encroach on thru lane alignment.

Truck Turning Templates – Use turning templates to check the typical type of vehicle, bus or truck using the intersection. UDOT typically utilizes the WB-67 for the design vehicle when analyzing turn movements. If another vehicle template is used then provide justification. Analyze turning movements to verify safe clearance of turning vehicles. Provide printed copies at the Plan-in-Hand Meeting.

Length – Design the length of the turn lanes to accommodate the queue volume and deceleration without backing traffic into the thru lane. When a raised island is required, design tapers and storage to be as long as practical to not affect the efficiency of the thru movement. Coordinate with the Region Traffic Operations Engineer to determine required storage length. When a signal is being upgraded or replaced, it is common to relocate the stop bar. In these situations, attempt to, at a minimum, replace the existing storage length with the new striping configuration. Coordinate with the Region Traffic Operations Engineer if the storage length is reduced to assess any traffic operations issues that may arise.

Bicycle Markings

Coordinate with the UDOT Bicycle Pedestrian Coordinator and the Central Traffic & Safety Engineer to assess bicycle needs. Provide bicycle detection and associated pavement markings as required in the UDOT Standard Drawings.

3.4 Signing

Inventory existing ground- and mast-arm-mounted signs and verify adherence to current UDOT and MUTCD standards. UDOT currently requires ASTM Type IX or better sheeting for all signs. The installation of a new traffic signal may require the installation of new signing or the removal of existing signing along the approaching roadway(s). Ensure that existing signing does not conflict with the new signal or new signing. Coordinate with the Region Traffic Operations Engineer for additional signing, such as guide signing, requirements and needs.
Mast-Arm-Mounted Street Name Signs

- Follow the latest version of the [UDOT Sign Manual](#).

- Place mast-arm-mounted signs according to the SL Series Standard Drawings. The sign placement shown in the standard drawings has been approved by the state furnished steel manufacturers to withstand expected wind loading on the mast arm and pole.

- Dimension signs in 6-inch increments. Typically, street name signs are 18 inches or 24 inches tall with a width depending on name length. Do not exceed a mast arm sign area of 20 square feet when the sign is placed between the innermost signal head and the signal pole. When the sign is placed between signal heads, do not exceed a mast arm sign area of 12.5 square feet. Do not exceed maximum mast arm loading requirements. (See SL 1 Series Standard Drawings.)

- Use initial upper-case letters and lower-case letters in street names, for example “300 South” or “Bangerter Hwy” (per [MUTCD](#)).

- Use 12-inch sign text for street signs. 8-inch text may be used in order to prevent exceeding the maximum sign area shown in the SL Series Standard Drawings.

- If the street has two names, put the most commonly referred to name in 12-inch text above the secondary name in smaller text on a 24-inch tall sign. (See Figure 3.4.1)

- Cross Streets may be designated with different street names on each side of the state highway. Effort should be made to show only one street name for the cross street at the intersection. When a numerical designation is part of a coordinate system, the coordinate designation will take precedence over all other street names. When the Region Traffic Operations Engineer approves the use of both names, use 6-inch text on a 24-inch sign, with arrows indicating the direction.

- Place the US Route Shield or State Route Beehive on the sign to the left of the street name (see Figure 3.4.1)
24th St with SR-53 Beehive: This 12 square feet sign may be mounted between the signal heads.

Redwood Road Sign with 12-inch lettering: This 20 square feet sign must be mounted between the innermost signal head and the pole.

600 South Sign with Street Name: This 16 square feet sign must be mounted between the innermost signal head and the pole.

State Street Sign with US-89 Shield: This 12 square feet sign may be mounted between the signal heads.
Street Sign: This 12 square feet sign may be mounted between the signal heads

FIGURE 3.4.1 – EXAMPLE MAST ARM STREET SIGNS
4.0 LIGHTING

Highway lighting is required at all signalized intersections, the extent of which depends on several conditions. When designing lighting for a given intersection, consider the following:

- Volume of pedestrian traffic
- Location within a commercial, residential, or rural environment
- Existing highway lighting systems
- Lighting needs for CCTV cameras
- Overhead utility conflicts
- Roadway configuration

These considerations will be factors in the selection of lamp wattage and placement. With the design, be sure to balance illumination needs with the surrounding environment. If highway lighting is provided along the corridor, provide 50% greater illumination at the intersection. Refer to the UDOT Standard Specifications and UDOT SL Series Standard Drawings for additional information.

4.1 LUMINAIRE COMPONENTS

Poles
UDOT’s standard luminaire can be attached to the top of a Type A, Type B, or Type C mast arm pole or it can be placed on a stand-alone highway luminaire pole. Note that Type B and Type C mast arm poles are 5 feet taller than Type A, thereby increasing the height of a luminaire on Type B and Type C poles by 5 feet.

Extension
For Type A mast arm poles a 7'-9", or 17'-9" luminaire extension will provide 30-foot, or 40-foot luminaire height, respectively. For Type B and Type C poles 2'-9" and 12'-9" extensions can be used for a 30-foot, or 40-foot luminaire height, respectively.

<table>
<thead>
<tr>
<th></th>
<th>2'-9"</th>
<th>7'-9"</th>
<th>12'-9"</th>
<th>17'-9"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Type B</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Type C</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

Highway luminaire poles do not require an extension.

Arm
The luminaire arm hangs out over the roadway. The arm length is how far the arm extends from the pole or extension. The arm length can be 10 feet, 15 feet, or a 2-
inch tenon mount fixture with a vertical attachment.

Vertical Attachment
The vertical attachment is an optional component that is used with a 2-inch tenon mount fixture in lieu of a luminaire arm. The vertical attachment is 5.5 feet in height.

Decorative Lighting
Decorative lighting is sometimes required by city ordinance or chosen for aesthetic reasons. Meet the minimum requirements UDOT Standard Specification 16525 and follow [UDOT Policy 06-06: Highway Lighting](#) when using decorative lighting on state highways. Because this is a betterment, the City must fund the additional cost and an agreement will need to be prepared.

4.2 Luminaire Placement

Overhead clearance is very important where luminaires are placed. Maintain minimum clearance from primary conductors to the luminaire. Contact local serving power company for required safe working clearances.

- Use 15-foot luminaire arm length if possible. A 10-foot luminaire arm or 5.5-foot vertical extension may be needed for smaller intersections, for utility conflicts, or to match existing luminaires.

- If possible, provide four luminaires per intersection.

- Highway lighting pole foundations extend 8 feet into the ground so be aware of subsurface utilities.

- Provide additional highway lighting along the highway corridor as directed by the Region Traffic Operations Engineer.

- Luminaire arms may be oriented at any angle from the mast arm. They are typically oriented parallel to or at 45° or 90° from the mast arm for aesthetic reasons.

4.3 Luminaire Type

- Use full cut-off LED cobra head luminaires with Type II distribution, 120 Volt single-phase, and 4000K-4500K apparent color temperature.

- Use 9,000 Lumen fixtures (Type A) for rural areas and residential neighborhoods.

- Use 14,500 Lumen fixtures (Type B) for major intersections and commercial or industrial areas.
4.4 **Alternate Mounting Options**

- When overhead utility conflicts are evident, consider a 5.5-foot vertical extension with a vertical adaptor for a horizontal 2-inch tenon mount fixture.

- In protected gore areas or islands, a 180° dual arm luminaire may be a viable option.

- Luminaire arms mounted on utility poles are usually installed by others through an agreement with the utility company.
5.0 PEDESTRIAN SIGNAL DESIGN

If crosswalk markings are warranted, then pedestrian signals may be considered and are subject to the pedestrian signal warranting procedure as shown on Standard Drawing DD 18. A crossing may warrant a pedestrian traffic signal, pedestrian hybrid beacons (HAWK), overhead mounted flashing beacons, or side mounted flashing beacons.

Coordinate with the Region Traffic Operations Engineer as to what type of crossing markings are to be used. If the crossing is on a designated school route, use school crossing markings. Crosswalks can be placed at intersections or at midblock crossings. Signalized midblock crossings must be a minimum distance from a controlled intersection as defined in the Standard Drawings and UDOT’s Access Management Policy R930-6. A Deviation from UDOT Standards would be required if it was determined that the signalized crossing is placed less than the minimum distance from an intersection. Refer to UDOT Standard Drawings SL 6B-6G for more details.

5.1 PEDESTRIAN SIGNAL

Pedestrian traffic signals are designed using the same parameters as a traffic signal except vehicle detection is not required. Refer to the standard drawings for more information. General design parameters are as follows:

- Provide a Type I head centered in each thru lane

- Place a mast arm mounted pedestrian warning sign (W11-2) between signal heads (See Figure 5.1.1). A single mast arm mounted pedestrian warning sign is sufficient for up to three thru lanes. For four or more thru lanes provide a second W11-2 sign.

- No heads are required in two way left turn lanes

- Solid double yellow line for 50 feet on either side of crosswalk

- Review ADA Accessibility Guidelines (ADAAG) compliance of ped ramps and upgrade if necessary

- Place 24-inch stop bar 50 feet in advance of crosswalk

- Sign no parking zones 50 feet before and 20 feet after crosswalk

- Provide pedestrian heads and detection

- Provide vehicle detection if directed by Region Traffic Operations Engineer
5.2 **PEDESTRIAN HYBRID BEACON CROSSWALK OR HIGH-INTENSITY ACTIVATED CROSSWALK (HAWK)**

The pedestrian hybrid beacon is, as its name suggests a hybrid between a pedestrian traffic signal and a pedestrian beacon. The hybrid beacon assembly consists of an arrangement of three Type 0 heads (two red and one yellow) centered over the thru lanes with a RS10-23a mast arm sign between the heads (See Figure 5.2.1).

5.3 **PEDESTRIAN FLASHING BEACON CROSSWALK**

The pedestrian flashing beacon crosswalk provides two yellow Type 0 flashing beacons 12 feet apart centered over the thru lane with a pedestrian warning sign between them (W11-2) (See Figure 5.3.1). A Type 0 head is also placed on the pole facing the crosswalk. Yield lines rather than stop bars are required. At midblock crossing use “Yield Here to Pedestrians” Sign (R1-5) at the yield lines on multilane approaches. Overhead flashing beacons rather than post-mount beacons are typically applied where the posted speed is greater than 35 MPH or on multilane roads.
5.4 **Post-Mount Pedestrian Flashing Beacon Crosswalk**

The pedestrian flashing beacon crosswalk provides two yellow Type 0 flashing beacons placed on a static roadside pedestrian warning sign (W11-2 & W16-7P) (See Figure 5.4.1). An additional Type 0 head is also placed on the pole facing the crosswalk. A rectangular rapid flashing beacon can be used in place of the Type 0 heads. Yield lines rather than stop bars are required. Post-mount flashing beacons are typically applied where the posted speed is 35 MPH or less, and at a single lane approach.

Figure 5.3.1 – Example Flashing Beacon

Figure 5.4.1 – Example Post Mounted Beacon
6.0 VEHICLE AND PEDESTRIAN DETECTION

Traffic signal detection is required at all new installations. Currently UDOT’s preferred method of actuation is RADAR. RADAR detection, also referred to as “NIDS” (non-intrusive detection systems) or “Wavetronix,” is easy to incorporate into the signal design and to install and provides an unobstructed view to vehicles. It uses electromagnetic waves so it can detect vehicles in inclement weather, changing lighting, shadows from vegetation or buildings, and other environmental conditions. These sensors are virtually maintenance free as they never need cleaning. It comes in several forms and can be applied for dilemma zone detection, stop line and queue detection, and general vehicle counting. These systems consist of pole-, luminaire-, or mast-arm-mounted sensors and a controller mounted to the inside wall of the signal cabinet. When a signal is being upgraded or rebuilt the designer should evaluate during the site visit what type of detection is currently being used. If RADAR is not being used the plans should call out for this to be upgraded to include RADAR.

6.1 VEHICLE DETECTION ZONES AND NEMA PHASING

General detection zone requirements as measured from the stop bar are as follows:

- **Stop Bar Detection** 0 feet to 20 feet detects the first vehicle in the queue.

- **Queue Detection** Designed to detect 3rd vehicle back and its leading edge is placed 50 feet back (for protected/permissive left turns only).

- **Extend Detection** 50 feet in each thru lane. This application is for signal green time extension on low-speed approaches. The extend zone is usually applicable with low speed facilities with loop detection.

- **Dilemma Zone** Based on the speed of the individual vehicles, the distance from the intersection where a driver will have difficulty deciding whether to stop or proceed if a yellow phase begins.

Coordinate with the Region Signal Engineer to determine which detection zones to include on each leg of the intersection. Figure 6.1.1 shows detection zones associated with RADAR detection. In designing effective vehicle detection, the main factors to consider are speed, approach types, i.e. arterial/major versus residential/minor roadways, and whether or not left turn phasing has been warranted. The following are typical intersection scenarios and the recommended detection combinations for each:

Thru Lanes

- Speed limit \(\geq 40 \text{ MPH} \): Stop bar detection, RADAR dilemma zone detection.

- Speed limit \(< 40 \text{ MPH}\): Extend detection in each thru lane.
- Speed limit < 40 MPH: Stop bar detection for all thru lanes.

Left Turn Lanes

- Protected/permissive left turn: Both stop bar and queue detection.
- Protected left turn: Stop bar detection.
FIGURE 6.1.1 – RADAR DETECTION ZONES

NEMA Phasing
UDOT has adopted the National Electrical Manufactures Association (NEMA) traffic signal phase conventions. The standard NEMA detector loop numbering associates each detector to its signal phase. Figure 6.1.2 illustrates the NEMA assignment and UDOT conventions to be used.

When the **major street runs north and south**, **phase 2** is assigned to the northbound thru traffic.

When **east/west is the arterial**, **phase 2** is assigned to the westbound thru traffic (all phases are rotated counter-clockwise 90 Degrees).

When **both roads are major highways**, **phase 2** is assigned to the northbound traffic.

- Through phases are numbered clockwise with even numbers.
- Left-turn phases are numbered clockwise with odd numbers, starting with the movement that is opposite phase two.

When dedicated left-turn phases are used, the NEMA phase preceding each thru movement is used for the left turn (leading left-turns). For example, phase 1 will be assigned to the left-turn movement opposing phase 2.
6.2 RADAR DETECTION

Stop Line & Queue Detection
Stop line & queue RADAR vehicle detection is an effective detection alternative. UDOT uses the Wavetronix Matrix system which offers the advantage of flexibility because detection zones can be added or adjusted for size and location by simple commands on a portable electronic device with internet capabilities or from the Traffic Operations Center if the signal is interconnected. However, unlike video detection, the system is not affected by insufficient lighting or adverse weather conditions such as snow, wind, or sun glare.

The Matrix system should be specified on new signal projects. For upgrades or pole relocations on existing signals, evaluate the existing detection system and verify any addition the Matrix system with the Region Project Manager, Region Signal Engineer, or Central Traffic & Safety Design Engineer.

Detection Area:
The Matrix sensor has a 140-foot radius quarter-circle detection area with the sensor being located at the circle’s center point (see Figure 6.2.1). In the Wavetronix software, individual detection zones as well as lane lines and the stop bar can be drawn within this area. When specifying this technology, be sure the sensor can be mounted such that all stop bar and queue zones will fall within the quarter-circle area. The detection of the queue zone is often overlooked especially in skewed intersections. Additional detection devices may be required to cover the queue zone.
In general, it is preferred to orient the mast arms perpendicular to the striping. However, there are times when a more efficient detection zone can be achieved by having the mast arms skewed in relation to the striping.

Adjust the sensor offset to provide adequate coverage in front of the stop line. Use a to-scale, quarter-circle template to assure the sensor location will properly cover the detection area. If the intersection is skewed, care must be taken that there are not blind spots in the stop bar detection. Figure 6.2.2 is an example of a skewed intersection with adequate stop bar detection.

Figure 6.2.2 – Example Radar Sensor Placement - Skewed

Sensor Placement:
The sensor is affected by occlusion from mast arms, power poles, trees, etc. Fortunately, it can be placed in a variety of locations and still provide effective vehicle detection. The general rules for locating a sensor are as follows:

- Mount 15 feet to 25 feet, 20 feet optimally, above the roadway surface
• Mount at least 20 feet offset from the first lane of desired detection

• Locate to avoid occlusions

• Orient such that the detection area covers a few feet in front of the stop bar

The preferred mounting location is on the backside of the opposing direction’s mast arm. If the detection at the preferred mounting location does not cover the stop bar, the following mounting locations may be used: the opposing direction’s signal pole just under the mast arm, or on a signal pole adjacent to the detection area. Actual sensor placement onsite will be field located with the aid of the Region Electronics Supervisor. See Figure 6.2.3 for typical Wavetronix Matrix sensor placement locations.
1 The back side of mast arm – This location allows the sensor to be placed near the lanes of interest; this is the preferred location for stop bar detection. Mount the sensor near the end of the mast arm to reduce the possibility of the mast arm or departing traffic occluding approaching vehicles.

2 The far side of approach – The sensor is usually mounted on a corner vertical mast pole or strain pole. If the sensor is mounted on a vertical pole with a mast arm, you can usually avoid occlusion by mounting the sensor away from or below the mast arm.

3 The near side of approach – This mounting location is typically best if detecting the left turn lane is less important. This location also allows you to mount the sensor high enough to avoid occlusion.

Figure 6.2.3 – Radar Stop Bar Detection Placement Options

Splice Kit Placement:
In most cases the RADAR cable will require a splice between the sensor and the controller cabinet because the cable connector has either a 100-foot or 120-foot pigtail length. The splice kit will be located inside the junction box near the signal pole on which the sensor is mounted. If the sensor is particularly close to the cabinet such that 100 or 120 feet of cable is adequate, a splice kit will not be needed. The 120-foot pigtail cable was added because the 100-foot cable was inadequate to reach the
junction box with 80 and 85-foot mast arms. Order the longer cables when using the 80 and 85-foot mast arms.

Dilemma Zone & Extend Detection
Dilemma zone RADAR detection is required on any State route with a speed limit of 40 MPH or higher and is encouraged for speeds of 30 MPH and higher for additional performance measures and safety. UDOT uses the Wavetronix Advance system, which can detect moving traffic up to 600 feet away and should cover most dilemma zone applications. The Advance system automatically detects vehicle speeds and determines the dilemma zone for each vehicle. Region Signal Maintenance personnel will set zones during the signal's initial activation.

In applications of speeds less than 40 MPH, this same RADAR system can be used for extend detection to monitor traffic flow approaching the intersection.

If the advance sensor cable length exceeds 600 ft in length, a larger cable may be required. Contact the sensor manufacturer for recommendations.

Sensor Placement:
The preferred mounting location for a sensor is no more than 50 feet offset from the detection area. However, the sensor is affected by occlusions from trees, wires and utility poles. Occlusion can often be prevented by placing the sensor on the backside and end of the opposing traffic's mast arm, or consider a separate pole located no greater than 100 feet upstream of the intersection. See Figure 6.2.4 for typical RADAR Dilemma placement options.
1 **On a vertical pole** – This mounting location is often a vertical pole near the stop bar. These poles often extend as high as 30 feet or more, allowing the sensor to be mounted high enough to reduce occlusion.

2 **On a luminaire** – This mounting location will often reduce the offset and increase the mounting height (a maximum of 40 feet is recommended). This location is not recommended due to bucket truck height limitations.

3 **The backside of the opposing mast arm** – By mounting at this location, opposite the signal heads for the opposing direction of travel, the sensor can be placed near the lanes of interest. The minimum mounting height is 17 feet, but higher mounting is recommended to minimize occlusion. A vertical extension can be used; the extension should have the ability to freely rotate the sensor for alignment. The sensor should be mounted as far out on the mast arm as possible to avoid potential occlusion.

Figure 6.2.4 – Radar Dilemma Placement Options

6.3 **Induction Loops & Wireless Sensors**

Pre-manufactured induction loops are the most accurate and reliable among detection technologies, and therefore remain often specified. However, induction loops require
extensive underground wiring and therefore are the most damaging when installed in existing roadway surfaces. Due to potential surface damage from saw-cuts and trenching, the Department only allows installation of loops under new roadways where loops and lead-ins can be placed in the base course before paving, or where loops can be saw-cut or trenched into place during at least a 3-inch deep rotomill and overlay.

Induction Loop Basics
A pre-manufactured loop is either a 6-ft x 6-ft square or 6-foot diameter circle with four No. 14 AWG wires (IMSA Spec 51-3) protected by high pressure/temperature conduit that is injected with water-blocking material. The wire is untwisted around the loop which creates the electro-magnetic field by which vehicles are detected.

The **lead-in** is the continuous wiring between the loop in the street and the junction box. This wire is splice-free from start to finish and is the same single conductor No. 14 wire that makes up the loop, extended to the edge of the road for connection. However, the lead-in will have at least 3 twists per foot from the loop to the junction box.

The **home run** is that portion of the detection system that connects the detector loop lead-in from the junction box to the signal cabinet. Home runs consist of twisted pair, two-conductor No. 14 shielded wire (Spec. IMSA 50-2). Each detector group will have a separate homerun cable and amplifier channel in the signal cabinet. The junction box lead-in-to-home-run connections are the only traffic signal field wire splices allowed.

A **detector group** consists of a maximum 4 loops. If a detection zone requires more than 4 loops, divide the groupings so that both loops in a single lane go to the same home run.

NOTE: Saw-cutting loops into new or existing pavement surfaces is **not allowed.** Induction loops must only be specified when placing a new pavement section or in rotomill and overlay application. The loops may be saw-cut into a milled surface and prior to placement of the asphalt overlay.

Wireless Sensors
The wireless sensor, also known as a “magnetometer” and commonly referred to as a “puck,” is a magnetic sensor that uses low-power radio technology to create a wireless vehicle detection system. This system uses in-pavement-mounted magnetic sensors to detect the presence and movement of vehicles. Each sensor has roughly the same detection characteristics as a 6-ft x 6-ft induction loop.

Wireless sensors are no longer recommended by UDOT for new construction, but are often encountered in older traffic signal systems. Wherever possible, wireless sensors should be replaced with RADAR detection. Specify wireless sensor detection only under the approval of the Region Signal Engineer and Central Traffic & Safety Design
Engineer.

This technology has the advantage that each sensor requires only a 4-inch core hole in the center of the lane and is thereby less damaging to the road surface as traditional saw-cut loops. The sensors can be installed in a fraction of the time required for saw-cut loops, thus requiring less traffic control and shorter duration of lane closures. Additionally, individual sensors can be added to the system for queues or other detection as required.

In addition to the sensors, the system requires a signal-pole- or mast-arm-mounted access point that must be within 150 feet and be in line-of-sight with the sensors. This device is wired to the signal cabinet and therefore is typically mounted on the nearest mast arm or luminaire extension to the cabinet. Sensors beyond distance or sight limitations will require a mast-arm- or luminaire-extension-mounted repeater nearby that is in line of sight with the access point. Repeaters, like the sensors, are powered by long-life batteries and therefore require no wiring or junction boxes, and may be placed up to 1000 feet from the access point.

Loop Locations
An induction loop location is measured from the stop bar edge closest to the loop to the loop’s leading edge. See Figure 6.3.1: Typical Loop Placement for illustration. General loop placement for detection zone as measured from the stop bar is as follows:

- Stop Bar Detection -- Place one loop at 3 feet and a second loop at 15 feet.
- Queue Detection -- Place one loop at 50 feet and a second loop at 60 feet.

Placement Considerations

- Pay special attention to intersections with non-standard geometry such that loops may operate in the "non-lock" mode.
- Apply good engineering judgment for additional loops where vehicles may be prone to stop ahead of the stop bar.
- If a detector loop location is in conflict with a manhole, water valve, etc., adjust the loop placement forward or backward in the shortest direction from the optimum position.

Additional Induction Loop Design Criteria

- As mentioned previously in “Induction Loop Basics,” saw-cut loops in new or existing pavement surfaces are not allowed. Consider specifying trenched in loops prior to milling and paving, or saw-cutting loops into the rotomilled surface.
• Specify queue-loops when the 5-year traffic projection indicates left-turn phasing will be warranted. Left turn signal heads will only be installed when warrants are met.

• Induction loops for a single intersection leg will only require one type I junction box. Locate the junction box between the front and back loop locations so that lead-in lengths are minimized.

Detector Loop Numbering
Syntax to be used: (P)(U)-(n)(z).

- **P** = NEMA phase number
- **n** = number for the loop in that grouping
- **U** = loop use (alphabetic)
- **z** = home run group alphabetical identification

Loop use (U) options:
- **T** = Thru or Right movement
- **L** = Left movement
- **Q** = Queue zone

Start the numbering at the stop bar, nearest the centerline, ascending toward the curb and increasing in value away from the intersection for each phase of the leg. The first loop of a group takes number 1 (one) and the Home Run Alpha Designation (a,b,c,...) for the group it is in. The left-turn and through movements for each leg will have an "a" home run. Refer to Figure 6.1.2 for a sample NEMA diagram.

Example: Single intersection leg, one left-turn lane with queue detection and 2 thru lanes with all loops in same grouping, phases 1 & 6:

Phase 1, front stop bar loop = 1L-1a
Phase 1, second stop bar loop = 1L-2a
Phase 1, front queue loop = 1Q-1b
Phase 1, second queue loop = 1Q-2b
Phase 6, lane 1 front stop bar loop = 6T-1a
Phase 6, lane 2 front stop bar loop = 6T-1b
Phase 6, lane 1 second stop bar loop = 6T-2a
Phase 6, lane 2 second stop bar loop = 6T-2b
6.4 Video Detection

Video detection is no longer a standard vehicle detection option for State-owned signals due to accuracy and maintenance issues. However, in some specific cases, video detection can be used as a temporary or permanent replacement for induction loops. Video still offers the advantage of flexibility because, like RADAR, detection areas can be added or adjusted by simple commands on a computer screen. Unfortunately, video detection continues to have significant disadvantages because it can be affected by adverse weather conditions, sun glare, shadows, and snow or grime on the lens, which results in diminished detection accuracy. Specify video detection only under the approval of the Region Signal Engineer and Central Traffic & Safety Design Engineer.

Camera Placement
Check for anything that might block the field of view or impact vehicle tracking such as
trees, overhead wires, and commercial light sources. Locate the camera on the mast arm so that it is centered at the dividing line between opposing left and thru lanes. This will ensure that the camera does not pick up thru traffic as a left turn call and vice versa.

Video Detection Zones

Video detection should not be used to monitor vehicle presence at distances greater than 250 feet. The general rule is that you can reliably detect 10 feet for every 1 foot above the pavement surface the camera is placed, to a maximum distance of around 250 feet. For detection distances greater than 250 feet from the video camera, or for dilemma zone detection, use RADAR detection.

NOTE: An intersection with five or more lanes generally will require two cameras for proper detection. Place the second camera two to three lanes away from the first camera.

Detection Zone Lighting

Ensure adequate lighting is available to allow the video detection to function properly.

6.5 **Pedestrian Detection**

Pedestrians are detected by push button. UDOT’s standard push button assembly can be found on SL 6A.

Audible pedestrian button assemblies are also an option. Pedestrian demographics dictate the use of audible buttons. Some disadvantages to audible pedestrian buttons are that they require more maintenance, are more expensive, and can be an annoyance to nearby homes and businesses. Coordinate with the Region Traffic Operations Engineer to determine if audible push buttons should be used. Audible pedestrian push buttons are obtained through state furnished materials.

A few factors must be considered when placing a pedestrian detection button because they will affect pole location, number of poles, and/or pedestrian access ramp design.

Standard requirements for ped buttons:

- Height: 42 ± 2 inches above the pedestrian ramp landing (≤ 2% grade in all directions)

- Maximum horizontal reach from landing: 10 inches

- Maximum horizontal distance to front-center roadside edge of ramp: 10 feet (measured from the center of the curb cut)

Pole Location & Number of Poles

Typically, the pedestrian frame, which holds the directional crossing sign and ped
button will be mounted on the mast-arm signal pole. The horizontal distance from the frame mounting point to the front-center roadside edge of the ramp is 10 feet or less. If not, consider locating a 5.5-foot ped pole for mounting the ped button at a closer distance, but still adjacent to the landing/turning space. This pole will be labeled on the design sheets with a “P” number just like the other poles.

6.6 PEDESTRIAN ACCESS

Refer to the signal warrant memo for pedestrian patterns and volumes. Should pedestrian access be required for the project, design facilities in accordance with Standard Specification 02771 as well as Standard Drawings SL6A through 6G and the PA Series Standard Drawings. If existing pedestrian access ramps are proposed to remain in place, perform an evaluation to assure that each one conforms to the ADAAG requirements as outlined in the PA Series Standard Drawings.

Pedestrian Ramp Design Factors

Due to factors such as slopes or limited space, a ped ramp may require an unusual design to best meet ADAAG specifications. As a result, the location of the ped button will need to correspond to the location of the pedestrian access ramp.

Examples of what to account for in pedestrian detection location:

- Use of curb walls to create an appropriately sized turning space can result in excessive reach to signal pole-mounted buttons. This can be resolved by having the curb wall either interface the center of pole foundation, or go around the back of the foundation. This requirement should be called out on both the RD and SG sheets.

- Some ped access ramps need slope transitions in order to achieve the necessary turning space, but the transitions end up where the signal pole is located or where a ped pole was planned. During the initial site visit, consider the potential obstacles that may affect ped ramp design. Consider creating a detail sheet for a custom ped ramp design including ped pole location if a standard ped ramp design is not adequate. This can be due to constricted right-of-way or existing slope restrictions. Refer to this DT sheet on both RD and SG sheets. On procurement contracts, it is often sufficient to ensure the feasibility of a ped ramp and its location and the contractor will construct it to meet requirements in the field.

6.7 BICYCLE DETECTION

Bicycle detection can be achieved by specialized loops, video, radar detection or even cyclist push buttons. Project special provisions may be necessary to implement bicycle detection. Provide necessary pavement markings to inform cyclists of detection locations. The type of bicycle detection will be specified by the Region Traffic Operations Engineer.
6.8 **Emergency Pre-emption**

Emergency pre-emption is a type of infrared or GPS detection that allows local emergency services to override the signal time to provide a green phase. The pre-emption detection device is typically mounted on top of the mast arm. Coordinate with the local government and with the Region Traffic Operations Engineer to determine if and where pre-emption is needed. If it is needed, the local government will furnish the equipment and UDOT personnel will provide the wire and install all equipment.

If a signal is within 500 feet of an at-grade railroad crossing, then the signal must have pre-emption. Coordinate with the Region Traffic Operations Engineer to determine who is responsible to provide the equipment. Coordinate with UDOT’s Chief Railroad Engineer on all projects involving railroads. Obtain necessary permits from the Railroad and adhere to their standards when working within their right-of-way. For project work involving UTA, UPRR, Utah Railway, or Utah Central Railway, keep in mind the long lead times (months to years) involved in making decisions, reviews and construction scheduling. Most work on the rails must be done by the Railroad. The Railroad is responsible for the railroad signal house connections.

![Mast Arm Components](image)

Figure 6.8.1 – Typical Mast Arm Components
7.0 ADVANCED WARNING SIGNAL SYSTEMS

An advance warning signal (AWS) may be warranted in association with high-speed signalized intersections to warn drivers in advance of the end-of-green phase approaching the signalized intersection. The warranting process for an AWS is found in the AWS Guidelines, see appendix 3. AWS systems are not necessary or appropriate at all signalized intersections as they may contribute to over-signing and will lose their effectiveness if they are overused.

W warranting for AWS systems is done through Central Traffic & Safety’s standard warranting process and follows the AWS Guidelines flow chart. This chart takes into consideration the following warranting criteria: limited sight distance, posted speed limit, history of severe crashes, whether the intersection is isolated from other intersections, heavy vehicle traffic, and approach grade.

7.1 AWS DESIGN

Options
UDOT allows three different AWS system options:

(A) Side Mounted
(B) Overhead Static Sign
(C) Overhead Blank-out sign

Examples of these options are shown in Figures 7.1.1, 7.1.2, and 7.1.3, respectively. The Region Traffic Operations Engineer will determine which option to employ.

The side mounted option is primarily used on single lane approaches. This option requires the use of a highway luminaire pole in order to place the advance detection device at the required height.
The overhead static sign is the preferred option because it offers high visibility and relatively low maintenance. It can be employed on single- and multi-lane roadways. The static sign with flashers is placed on a traffic signal pole with an appropriately sized mast arm.
The overhead blank-out sign option is the most expensive and difficult to maintain option. It, also, can be used on single- and multilane roadways. The weight of the blank-out sign requires it to be placed on a Type C signal pole with a 4-ft x 14-ft foundation (See figure 3.1.1). It will require a mast arm that will fit on a Type C pole and cut to the needed length.

Location
Refer to the SL 8 (Advance Warning Signal System Standard Drawing) for information on how to place an AWS system. Studies have been conducted to determine how far up-stream an AWS should be located. The AWS standard drawing provides the equations necessary to determine the distance from the intersection to the AWS. The location will need to be increased for downhill approaches. Obtain approval for the location of all AWS systems from the UDOT Traffic Operations Center and the Region Traffic Operations Engineer.
Verify placement to provide at least two seconds of sight distance on approach and adjust if needed. The overhead AWS assembly may need to be oriented with a skew to the roadway in order to provide optimal visibility. Typically, the AWS assembly is located over the travel lanes so that the outermost yellow flashing beacon is centered over the edge of the outside through lane. This location can be adjusted to provide optimal visibility and budgetary constraints. Be mindful of the roadside clear zone when locating the AWS pole. It will need to be located outside the clear zone or protected by a crash-worthy barrier system. Also ensure lateral offset requirements are met in urban settings.

Detection & Connection
Advance detection is required for an AWS to detect vehicles traveling towards the intersection and prior to the AWS. Therefore, a radar unit should be mounted on the mast arm or signal pole where the AWS sign is mounted. The radar unit will detect vehicles on approach to the signal and provide necessary feedback back to the traffic signal. In order for the overall signal system to function properly, advance detection is required the same distance from the intersection in the both directions. For this reason, it is often advisable to place AWS in both directions.

The advance detection at the AWS acts as the dilemma zone detection for the signalized intersection. It is not necessary to have dilemma detection at the intersection’s signal and the AWS. Therefore, only stop bar detection will be required at the intersection, where an AWS is present.

At a minimum, provide two 2-inch conduits from the intersection signal cabinet, one for the signal wire and the other for the advanced detection cable. Provide a Type II junction box near the AWS foundation unless directed otherwise by the Region Signal Engineer. Coordinate other cable and conduit needs such as lighting, ATMS, and future use.
8.0 POWER SERVICE CONNECTION

Contact the Region Utility Coordinator/Engineer to request a work order from the local serving power company and arrange a site meeting to verify the power source type and location. On the signal plans, list the work order number (if applicable) and name and phone number of the individual with whom the connection will be arranged. Also, identify the location of the power source graphically on the plans and indicate whether it is a pole or ground-mounted transformer. The service power source can be from an underground sleeve, a pole mounted transformer, or a ground-mounted transformer. Refer to Standard Drawing SL 4A through SL 4E for details.

Coordinate with the Region Utility Coordinator/Engineer regarding lighting agreement requirements with the local municipality. The local municipality will be responsible for utility bills related to intersection street lighting power and maintenance. List the contact person's name and phone number on the plans.

Remember to contact the Region Utility Coordinator/Engineer periodically during the design phase to coordinate the project service needs, and to assure work estimates have been approved.

8.1 UNDERGROUND SERVICE PEDESTAL

The underground service pedestal should be located on either side of the controller cabinet, preferably on the same corner where the power source is located. Refer to Standard Drawing SL 4C for pedestal details and to Standard Specifications 02892 and 16530 for Power Source specifications.
9.0 SIGNAL CIRCUIT DESIGN

Circuit conduits should extend across two different legs from the Type III junction box near the signal cabinet and cross the major street on one leg and the minor street on two legs.

The figures in this section are for instructional purposes only and are not meant to be included in plan sets. Cables rather than conduits are shown.

9.1 POWER SOURCE

Provide 120 Volt single phase power to the underground service pedestal. Contact the local serving power company for wire and conduit requirements from the power source to the underground service pedestal. Make note of these requirements on the signal sheets where appropriate. If the power company provides a work order number provide it on the signal plan sheet.

Controller Cabinet Power
Specify 2 single-conductor copper cable type RHH-USE2-RHW2 wires and stranded copper ground wire, No. 6 AWG minimum. Cabinet 120 Volt power is supplied directly from the service pedestal to the cabinet.

9.2 SIGNAL HEADS

Signal Circuits
Specify 7-conductor No. 14 AWG, Stranded Cable, IMSA 20-1 (120 Volts). Provide a separate 7-conductor for protected left phase/flash yellow signal heads and for nearside heads.
Plan View

A separate 7-conductor cable is required for near-side signal heads. A separate 7-conductor cable is required for signal heads with different phasing.

Legend:
- Red: Cable for Type III head on P1
- Pink: Cable for Type I heads on P1
- Orange: Cable for near-side head on P1
- Blue: Cable for Type III head on P2
- Green: Cable for Type I heads on P2
- Purple: Cable for Type III head on P3
- Cyan: Cable for Type I heads on P3
- Yellow: Cable for Type III head on P6
- Gray: Cable for Type I heads on P6
- Green: Cable for Type III head on P4
- Cyan: Cable for Type I heads on P4

Major Street
- 2 cables

Minor Street
- 3 cables
- 5 cables

Key Elements
- Calculate cable quantities from signal cabinet to farthest signal head that uses that cable.
- Account for pole height, mast arm distance, and slack in junction boxes.

Figure 9.2.1 – Signal Circuit Cable Example
Pedestrian Circuits
Specify 7-conductor No. 14 AWG, stranded cable, IMSA 20-1 (120 Volts).

Key Elements
- Calculate cable quantities from signal cabinet to pedestrian head.
 - Account for pole height and slack in junction boxes.

Figure 9.2.2 – Pedestrian Circuit Cable Example
9.3 **LIGHTING**

Specify 2 single-conductor copper cable type RHH-USE2-RHW2 wires No. 10 minimum and stranded copper ground wire, No. 10 AWG minimum, IMSA 51-1, refer to Standard Specification 16530. Larger wire must be used when voltage drop calculations show drops greater than 5% of supply line voltage. Street lighting 120 Volt power is supplied directly from the service pedestal to the nearest street lighting junction box.

Figure 9.3.1 – Lighting Circuit Cable Example

9.4 **DETECTION**

Pedestrian Push Button
Specify 4-conductor No. 14 AWG, stranded cable, IMSA 20-1 (low voltage).

Key Elements
- Calculate cable quantities from signal cabinet to each push button pole.
 - Account for height of button and slack in junction boxes.

Figure 9.4.1 – Push Button Circuit Cable Example
Induction Loop Home-Run
Specify 2-conductor No. 14 AWG, shielded and stranded twisted pair, IMSA 50-2 (low voltage). Label each end of home run.

Pre-manufactured Induction Loop Wire
Specify IMSA 51-7 (low voltage).

Wireless Sensors
Specify IEEE 568B cable with RJ45 connectors for connection of the Access Point to the cabinet.

RADAR Detection – Stop Bar or Dilemma Zone
Specify contractor-furnished, manufacturer-approved, color-coded 6-conductor cable from splice kit to signal cabinet. RADAR detection cable has 2 twisted pair RS-485, 22 AWG wire for communication, and one twisted pair 20 AWG wire for power. Wavetronix part number WX-SS-705 or approved equivalent (low voltage).

Video Cable Requirements for Peek and Iteris Hardware
Belden 8281 or equivalent coaxial cable (video), Spec. RG-59. Use for field run less than 1000 feet from pigtail connection at base of signal pole to controller cabinet.

Video Cable Requirements for Traficon Hardware
Combined video coaxial/power cable provides splice free connection from camera to controller. State Furnished cable comes in 250-foot, 500-foot, and 1000-foot spools. Specify the required length when placing State Furnished Material Requisition.

Video Cable Requirements for Econolite Hardware
6-pair twisted No. 18 AWG, shielded cable Spec. IMSA 60-6 for video signal (low voltage).
9.5 **Conduit**

Use schedule 40 PVC or SDR-11 HDPE conduit UL Listed electrical conduit for underground signal installation. PVC is commonly used in trenching and HDPE in boring applications. Use galvanized rigid steel (GRS) UL Listed electrical conduit for above ground applications. Special considerations for fiber-optic cable installation are needed (see Part 9.9 below, or refer to the contact list for further details). Never specify conduit diameter size less than 2 inches for signal and lighting cables.
Choosing the Right Conduit

The National Electric Code (NEC) requires no more than 40% of a conduit be filled with wire and cable. The cross-section of the wire (single conductor) or cable (multi conductor) varies depending on the type of insulation specified. Listed below are approximate cross-sectional areas for the typical cables used, and the allowable area at 40% capacity for various conduit sizes.

Example: Choose the conduit size required to accommodate 12 detector loop home runs. The area of a 2-conductor No. 14 cable is selected and multiplied by 12 to obtain a total cable area of 1.08 sq. inches. Therefore, the 2-inch PVC conduit is selected as the appropriate size.

Table 9.5.1 – Cable Cross-sectional Area

<table>
<thead>
<tr>
<th>Wire Spec.</th>
<th>Cable Size</th>
<th>Cross-Sectional Area (sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHH-USE2-RHW2</td>
<td>No. 2</td>
<td>0.13</td>
</tr>
<tr>
<td>RHH-USE2-RHW2</td>
<td>No. 4</td>
<td>0.10</td>
</tr>
<tr>
<td>RHH-USE2-RHW2</td>
<td>No. 6</td>
<td>0.08</td>
</tr>
<tr>
<td>RHH-USE2-RHW2</td>
<td>No. 10</td>
<td>0.03</td>
</tr>
<tr>
<td>IMSA 50-2</td>
<td>2-Cond. No. 14 Twisted Pair</td>
<td>0.13</td>
</tr>
<tr>
<td>IMSA 20-1</td>
<td>4-Cond. No. 14 Stranded</td>
<td>0.12</td>
</tr>
<tr>
<td>IMSA 20-1</td>
<td>7-Cond. No. 14 Stranded</td>
<td>0.17</td>
</tr>
<tr>
<td>Smart Sensor Cable</td>
<td>6-Cond. Twisted pair</td>
<td>0.11</td>
</tr>
<tr>
<td>Smart Sensor Cable</td>
<td>HD9 (For long runs)</td>
<td>0.15</td>
</tr>
<tr>
<td>Preemption Cable (Opticom)</td>
<td></td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table 9.5.2 – Conduit Capacity

<table>
<thead>
<tr>
<th>Conduit Size (in.)</th>
<th>40% of Sched. 40 Rigid PVC & HDPE Capacity (sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>2 ½</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>3 ½</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Choosing the Number of Conduits

A standard intersection will require a minimum six 2-inch conduits per roadway crossing. The circuits within the conduits are arranged as shown in Figure 9.5.1:
In some cases, an intersection will have extra items such as nearside signal heads or supplementary vehicle detection. Be sure to compare wire and cable sizes and quantities versus conduit area. Some crossings may need additional or larger conduit to handle the amount of wire and/or cable. In other cases, an intersection will not have all of the first four circuits on each roadway crossing. When this occurs, assign more conduits as future use to maintain six conduits per roadway crossing. Be sure to verify the wire and cable sizes going from the Type C junction box to the cabinet to ensure that the appropriate sizes of conduit are specified.

Shared Usage
- Traffic signal heads, pedestrian signal heads, and video detection operate at 120 Volts and may share conduit.
- Detection and pedestrian push button are low voltage circuits and may share the same conduit.

Future Use
Specify two future-use conduits, 2 inches in diameter, placed between all pole junction boxes and the controller cabinet. Place the future-use conduits on top of the other conduits in the trench. Include one continuous detectable pull tape in each future-use conduit. This wire is used to pull future wire and can also be used to locate the underground conduit run.

9.6 Junction Boxes

For signal and lighting installations, specify boxes, rings, and lids that meet the requirements of ANSI/SCTE-77 including Tier 22 loading. Place an individual Type II-junction box at the base of each signal pole and a Type III junction box at the controller cabinet. The signal pole junction box may be eliminated when the controller cabinet
junction box is near the pole location.

The signal circuit Type II junction box is shared with lighting, signal, pedestrian, and detection circuits however the conduits are not shared. These separate circuits are identified on the plans with the appropriate legend. The lighting circuit will always have its own conduit.

9.7 **GROUND RODS & WIRES**

Ground rods will be a 10-ft x ¾-inch copper-coated steel UL Listed and installed at each junction box and underground service pedestal that contains cables with 120-Volt circuits or greater.

UDOT requires a single AWG No. 6 stranded copper ground wire (see Specification 16530) in ANY conduit containing a 120-Volt or higher circuit, and for each signal and lighting pole. This wire is grounded at each junction box along the associated circuit (lighting, signal, and power circuits). Refer to UDOT Standard Drawings SL series for details.

9.8 **CONTROLLER & CABINET**

Controllers are “TS2 Type 1” and cabinets "TS2 Size 6." The controller and cabinet are state furnished items.

9.9 **INTERCONNECT (ATMS)**

All traffic signals should be connected to UDOT’s ATMS fiber optic network. Coordinate with the ATMS Project Manager early in the project to determine project specific interconnect features. Provide notice of any necessary fiber or splice details that will be needed for construction. If fiber optic infrastructure is not available radio interconnect should be examined.

In general, use 1-D MD-7 conduit to accommodate fiber optics with Type II-PC junction boxes with 35 feet of slack at pull locations. Splice locations require Type III-PC junction boxes with 100 feet of cable slack. Specify the correct number of fusion splices and the appropriate type of splice enclosures. Space junction boxes at 300 feet +/- intervals. Use large radius sweep bends (3 feet minimum) for fiber optic cable. Install a locator wire placed in a 1-inch PVC conduit. Refer to Standard Drawing AT 6 and AT 7A.

The interconnect from the ATMS fiber splice junction box to the controller cabinet is commonly referred to as a “fiber drop.” Provide a single 3-inch conduit from the splice junction box to the signal cabinet. Orient the direction of the 3-inch conduit stub in the cabinet foundation to accommodate fiber-optic installation. Refer to Standard Drawing SL 4A.
Interconnect Cable
No. 19 AWG, 6 pair, Spec. IMSA 60-6 (low voltage).
Pre-terminated fiber optic cable, 6 SMF minimum.
10.0 OTHER CONSIDERATIONS

10.1 ATMS IMPROVEMENTS

ATMS improvements are almost always included with an upgraded or new signalized intersection. In addition to the signal interconnect described in Part 9.9, ATMS improvements may include CCTV cameras, non-intrusive detectors, variable messages signs, etc. Coordinate ATMS needs with the Region Project Manager and the ATMS Project Manager. ATMS designs are based on the AT Series Standard Drawings and the Standard and Supplemental Specifications (the ATMS related standard specifications number 13431 through 13595).

10.2 TEMPOARY OPERATION

When modifications are made to an existing signalized intersection, care must be taken to provide for temporary power and signal control as necessary. Phasing of the new construction and demolition of the existing signal conduit and wiring must be given due consideration to insure proper function until it is no longer needed.

When alterations to the existing signal phasing or function or traffic lane assignments are proposed, an approved temporary signal operation/phasing plan is required.

Consider the use of contractor-supplied, temporary, aboveground detectors (video, radar, etc.) for maintenance of traffic during construction.

Changing over from an existing traffic signal to new equipment will require aid of uniformed policemen. Include a note in the signal sheets that the contractor must make all necessary preparations to minimize the signal shut down time. Clearly define the temporary traffic control limitations and assign liquidated damages for non-compliance as appropriate.

10.3 NEW SIGNAL ACTIVATION

When turning on a signal for the first time in a newly signalized intersection, consider the following methods to alert the public of the signal going into operation:

- Use portable Variable Message Signs (VMS) 24 to 48 hours prior to activation, warning of the impending change.
- Notify the local news media, if deemed necessary.
- Utilize local law enforcement to draw attention to the change.

10.4 SINGLE-POINT URBAN INTERCHANGE (SPUI)

Each SPUI has many unique features, which must be examined case by case for an effective signal layout. The following are some general recommendations for under-
and over-freeway, single- and dual-lane SPUI configurations:

- Off-Ramp Left Turn Movement – Provide advance signals placed on the right-side island. Place this signal head as far back up the ramp as practical without confusing the right-turning vehicles. Provide red, yellow, and green arrows tilted at 45 degrees up from horizontal. Do not use programmable heads.

- Left-Turn Movements onto the Freeway – Use red, yellow, and green arrows tilted at 45 degrees up from horizontal.

- Do not place signal poles in the median.

Interchange lighting should be placed in the SPUI to ensure the entrances to freeway on-ramps are well lit and visible from the stop bar.

A qualified structural engineer should design the overhead signal bridge structure. Standard tenons are used to mount the signal heads to the signal bridge. Include a detail of the signal bridge and identify the tenon locations to insure proper signal head placement in relation to the traffic lanes. Back plates for the signal heads will be necessary but may be influenced by the size and height of the support structure.

10.5 **Diverging Diamond Interchange (DDI)**

A Diverging Diamond Interchange is a relatively new interchange that is a unique challenge to driver expectation so proper signalization is vital to its safety and functionality. Refer to [UDOT’s DDI Guideline](#) for specific design information.

10.6 **Continuous Flow Intersection (CFI)**

Continuous Flow Intersections have become a standard transportation solution throughout the state. CFI’s also provide a unique challenge to driver expectancy and comfort. Intersection geometry and signal timing are critical elements to consider when designing a CFI. Refer to [UDOT’s CFI Guideline](#) for design information.
11.0 QUESTIONS?

Please contact the Division of Traffic & Safety if you have any questions regarding this guideline or how it applies to the project that you are working on (refer to the Contact List in Appendix 2). Designers, contact Traffic and Safety early in the design process to discuss standard UDOT intersection design and specific issues regarding your project. Early interaction expedites the design process and helps lead to the successful completion of the project.
Appendix 1 Standard Signal Equipment ... A.1-1
Appendix 2 Contact List .. A.2-1
Appendix 3 Information and Downloads ... A.3-1
Appendix 4 Procurement Sample Signal Plan and Documents A.4-1
APPENDIX 1 STANDARD SIGNAL EQUIPMENT

<table>
<thead>
<tr>
<th>Mast Arm Options</th>
<th>25'</th>
<th>30'</th>
<th>35'</th>
<th>40'</th>
<th>45'</th>
<th>50'</th>
<th>55'</th>
<th>60'</th>
<th>65'</th>
<th>70'</th>
<th>75'</th>
<th>80'</th>
<th>85'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A for Curved Mast Arms</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast Arms (15' signal pole on a 3x12 foundation)</td>
<td></td>
</tr>
<tr>
<td>Type B for Straight Mast Arms</td>
<td></td>
</tr>
<tr>
<td>Mast Arms (20' signal pole on a 3x12 foundation)</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B for Straight Mast Arms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast Arms (20' signal pole on a 3x14 foundation)</td>
<td></td>
</tr>
<tr>
<td>Type C** for Straight Mast Arms</td>
<td></td>
<td>X**</td>
<td>X**</td>
</tr>
<tr>
<td>Mast Arms (20' signal pole on a 4x14 foundation)</td>
<td></td>
</tr>
<tr>
<td>Type DC for Dual Curved Mast Arms</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast Arms (15' signal pole on a 3x14 foundation)</td>
<td></td>
</tr>
<tr>
<td>Type DS** for Dual Straight Mast Arms</td>
<td></td>
<td>X**</td>
<td>X**</td>
</tr>
<tr>
<td>Mast Arms (20' signal pole on a 3x14 foundation)</td>
<td></td>
</tr>
</tbody>
</table>

* Field Cut ** Special Order

Luminaire Poles and Extensions:
- Mounting Height: 25', 30', 35', and 40'
- Arm Length: 10' and 15'
- 180° dual arm: 10' and 15'
- Vertical extension for Mongoose luminaire
- Pole cap, if no luminaire extension on signal pole

Mast Arm Mounted Signs:
- **W x H**
 - R10-12 (Protected/Permissive – Type V) 24" x 30"
 - RS10-21ex (Protected/Permissive – Type VI) 30" x 42"
 - R3-5 (Protected – Type III) 24" x 30"
 - Street Name Signs 20 ft² max
Ground Rods:
 Junction boxes and USP 10' x 3/4” diameter

Anchor Bolt with Hardware (four required per pole, six required for Type C signal poles)
 Signal Poles 2” dia. x 66” bolts
 45’ CCTV Poles 1.5” dia. x 54” bolts
 30’ & 40’ Luminaire Pole 1” dia. x 36” bolts
 Ped Poles 1” dia. x 36” bolts
APPENDIX 2 CONTACT LIST

DIVISION OF TRAFFIC AND SAFETY
Traffic & Safety Engineer Robert Miles (801) 965-4273 robertmiles@utah.gov
Traffic & Safety Design Engineer Jesse Sweeten (801) 965-4924 jsweeten@utah.gov
Traffic Operations Engineer Glen Blackwelder (801) 965-4045 gblackwelder@utah.gov
Safety Engineer Scott Jones (801) 965-4285 wsjones@utah.gov
Bicycle and Pedestrian Coordinator Heidi Goedhart (801) 783-8426 hgoedhart@utah.gov
Lighting Ming Jiang (801) 965-4817 mjiang@utah.gov

REGION ENGINEERS
Region One
Traffic Operations Engineer Darin Fristrup (801) 620-1607 dfristrup@utah.gov
Traffic Engineer Paul Egbert (801) 620-1622 pegbert@utah.gov
Assistant Traffic Engineer Todd Finlinson (801) 620-1619 tfinlinson@utah.gov
Traffic Signal Engineer Carrie Jacobson (801) 620-1673 cjacobson@utah.gov
Utility Leader Tucker Doak (801) 620-1660 jdoak@utah.gov

Region Two
Traffic Operations Engineer Patrick Cowley (801) 975-4827 pcowley@utah.gov
Traffic Engineer Jeff Lewis (801) 887-3759 jlewis@utah.gov
Assistant Traffic Engineer Amber Mortensen (801) 887-3624 ammortensen@utah.gov
Assistant Traffic Engineer Tyler Laing (801) 887-3792 tlaing@utah.gov
Traffic Signal Engineer Peter Jager (801) 887-3715 pjager@utah.gov
Utility Leader Alana Spendlove (801) 887-3462 aspendlove@utah.gov

Region Three
Traffic Operations Engineer Brian Phillips (801) 227-8019 bphillips@utah.gov
Traffic Engineer Doug Bassett (801) 227-8081 dbassett@utah.gov
Assistant Traffic Engineer Brent Wallwork (917) 689-3259 bwallwork@utah.gov
Traffic Signal Engineer Adam Lough (801) 718-4326 alough@utah.gov
Utility Leader Josh Glazier (801) 222-3412 joshglazier@utah.gov

Region Four
Traffic Operations Engineer Robert Dowell (435) 896-1300 rdowell@utah.gov
Traffic Engineer Anne Ogden (435) 893-4715 aogden@utah.gov
Assistant Traffic Engineer Nathan Merrill (435) 691-1757 nmerrill@utah.gov
Traffic Signal Engineer Adam Lough (801) 718-4326 alough@utah.gov
Utility Leader Gernice White (435) 893-4764 gernice@utah.gov

TRAFFIC SIGNAL SYSTEM INSPECTION/MAINTENANCE SUPERVISION
Region One David Townsend (801) 940-0485 dtownsend@utah.gov
Region Two Dave Mount (801) 330-4446 dmount@utah.gov
Region Two Shaun Montgomery (801) 514-9283 smontgomery@utah.gov
Region Three Grant Jackson (801) 227-8040 gjackson@utah.gov
Region Four, Cedar, St. George Lee Thompson (435) 590-9976 lthompson@utah.gov
Region Four, Other Graig Ogden (435) 201-4465 gogden@utah.gov

STATE FURNISHED MATERIALS
SFM Manager Phil Pettersson (801) 419-1462 ppettersson@utah.gov
Warehouse Manager Greg Palmer (801) 965-4258 gpalmer@utah.gov
SIGNAL SYSTEM COORDINATION

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide Coordination</td>
<td>Mark Taylor</td>
<td>(801) 887-3714</td>
<td>marktaylor@utah.gov</td>
</tr>
<tr>
<td>Statewide Signal Engineer</td>
<td>Matt Luker</td>
<td>(801) 887-3627</td>
<td>mluker@utah.gov</td>
</tr>
<tr>
<td>Statewide Signal Engineer</td>
<td>Jamie Mackey</td>
<td>(801) 887-3489</td>
<td>jamiemackey@utah.gov</td>
</tr>
</tbody>
</table>

ATMS PROJECT MANAGEMENT

<table>
<thead>
<tr>
<th>Region</th>
<th>Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region One</td>
<td>Matthew Smith</td>
<td>(801) 887-3716</td>
<td>matthewsmith@utah.gov</td>
</tr>
<tr>
<td>Region Two</td>
<td>Chris Siavrakas</td>
<td>(801) 718-0019</td>
<td>csiavrakas@utah.gov</td>
</tr>
<tr>
<td>Region Three</td>
<td>Brad Cameron</td>
<td>(801) 887-3719</td>
<td>bcameron@utah.gov</td>
</tr>
<tr>
<td>Region Four</td>
<td>Matthew Smith</td>
<td>(801) 887-3716</td>
<td>matthewsmith@utah.gov</td>
</tr>
<tr>
<td>Fiber Manager</td>
<td>Lynne Yocom</td>
<td>(801) 887-3780</td>
<td>lyocom@utah.gov</td>
</tr>
</tbody>
</table>
APPENDIX 3 INFORMATION AND DOWNLOADS

All standard drawings, specifications, and signal design and material requisition information is available at the UDOT website:

UDOT ADA Pedestrian Access Program Pedestrian Access Ramp Manual

UDOT Quality Control / Quality Assurance Documentation

UDOT Project Design Criteria (PDC) Form

UDOT Design Exception, Design Waiver, and Deviation from UDOT Standards

UDOT CADD Downloads
includes CADD Standards Manual and Latest Plan Sheet Development Standards.

UDOT Roadway Design Manual of Instruction

UDOT State Furnished Materials Forms (Signal and ATMS)

UDOT DDI Guideline

UDOT CFI Guideline

UDOT Project Delivery Network

UDOT Sign Manual

UDOT Traffic Signal Turn-on Checklist

Utah Standard Highway Signs Supplement

UDOT Policy R930-6. Access Management
UDOT Policies (Street Name Signs – 06C-03, Highway Lighting – 06C-06, Pedestrian Access Program – 06C-16, Signal Pre-Emission – 06C-18, Traffic Signals – 06C-51)

UDOT AWS Guidelines

UDOT Left-Turn Phasing at Signalized Intersections

UDOT MUTCD

Other Reference Materials (latest edition):

FHWA Subsurface Utility Engineering

FHWA MUTCD

AASHTO A Policy on Geometric Design of Highways and Streets

AASHTO Structural Supports for Highway Signs, Luminaires & Traffic Signals

AASHTO Roadside Design Guide

ITE Manual of Traffic Signal Design

NFPA National Electric Code

AASHTO An Informational Guide for Roadway Lighting

IESNA Roadway Lighting, RP-8-00

Utah Collaborative Active Transportation Study (UCATS)

Americans with Disabilities Act Access Guidelines (ADAAG)
APPENDIX 4 PROCUREMENT SAMPLE SIGNAL PLAN AND DOCUMENTS

Includes the following:

Plans and Documents
1. Title/Index to Sheets
2. Roadway (RD-01)
3. Signal (SG-01)
4. Signal Circuit (SG-02)
5. Signal Schedule (SG-S01, SG-S02, SG-S03)
6. ATMS (ATMS-01)
7. ATMS Schedule (ATMS-S01)
8. Procurement Estimate (Example)
9. State Furnished Items Form
10. ATMS State Furnished Items Form
LIMITATION OF OPERATIONS:

1. PERFORM ALL WORK DURING NORMAL WORK HOURS (7:00 AM TO 5:00 PM)
2. NO RESTRICTIONS ON TIME OR DAY FOR SHOULDER CLOSURES.
3. LANE SHIFTS AND CLOSURES ALLOWED PER TRAFFIC CONTROL

STD (MOS) FROM 9:00 AM TO 3:00 PM.

NO RESTRICTIONS ON TIME OR DAY FOR SHOULDER CLOSURES.

BEGIN PROJECT

S-0012(34)56 MP 33.800

END PROJECT

S-0012(34)56 MP 34.050

INDEX TO SHEETS

<table>
<thead>
<tr>
<th>SHEET NUMBER</th>
<th>NUMBER OF SHEETS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>TITLE INDEX TO SHEETS</td>
</tr>
<tr>
<td>RD-01</td>
<td>1</td>
<td>ROADWAY</td>
</tr>
<tr>
<td>SG-01</td>
<td>1</td>
<td>SIGNAL</td>
</tr>
<tr>
<td>SG-02</td>
<td>1</td>
<td>SIGNAL CIRCUIT</td>
</tr>
<tr>
<td>SG-RET TO SG-02</td>
<td>3</td>
<td>SIGNAL SCHEDULE</td>
</tr>
<tr>
<td>ATM-01</td>
<td>1</td>
<td>ATM SCHEDULE</td>
</tr>
<tr>
<td>ATM-501</td>
<td>1</td>
<td>ATM SCHEDULE</td>
</tr>
</tbody>
</table>

*SUPPLEMENTAL DRAWINGS SHEETS ARE NOT INCLUDED IN THIS PLAN SET INFORMATION FOUND ON SUPPLEMENTAL DRAWINGS APPLY TO THIS PROJECT.
ITEM	QUANTITY	UNIT
REMOVE CONCRETE SIDEWALK | 35 | SQ FT
REMOVE CURB & GUTTER | 45 | FOOT
CURB & GUTTER - LESS THAN 50 FEET | 45 | FOOT
CONCRETE SIDEWALK | 35 | SQ FT
PEDESTRIAN ACCESS RAMP | 127 | SQ FT
DETECTABLE WARNING SURFACE | 16 | SQ FT

ITEM	QUANTITY	UNIT
REMOVE PAVEMENT MESSAGE BY WATER BLASTING | 2 | EACH
REMOVE PAVEMENT MARKING PAINT BY WATER BLASTING | 48 | FOOT
PAVEMENT MARKING PAINT - 4" WHITE OR YELLOW | 240 | FOOT
PAVEMENT MARKING PAINT - 6" WHITE | 100 | FOOT
THERMOPLASTIC MESSAGE (CROSSWALKS, STOP LINES) | 36 | FOOT
THERMOPLASTIC MESSAGE | 2 | EACH
AUXILIARY SIGN TYPE A | 7.5 | SQ FT
SLIPRECE GROUND MOUNTED TUBULAR STEEL SIGN POST | 1 | EACH

SIGN CODE LEGEND:
N - NEW SIGN
R - RELocate SIGN
X - REMOVE SIGN

STRIPING KEY:
SWL - SOLID WHITE LINE
DYL - DOUBLE YELLOW LINE
SL - STOP LINE

NOTES:
1. UTILITY LOCATIONS SHOWN ARE APPROXIMATE. UTILITIES ARE TO BE BLUESTAKED BEFORE WORK BEGINS. VERIFY LOCATIONS IN FIELD AND PROTECT EXISTING UTILITIES IN PLACE.
NOTES:

1. INSTALL NEW UNDERGROUND SERVICE PEDESTAL AND CONNECT TO EXISTING POWER SOURCE. ROCKY MOUNTAIN POWER TO REMOVE EXISTING POWER METER. COORDINATE WITH CURTIS GALVEZ (801) 708-6157 FOR POWER INSPECTION AND COORDINATION. REFERENCE WORK ORDER NUMBER # 1234567. INFORM TUCKER DOAK AT (801) 620-1660 WHEN ROCKY MOUNTAIN POWER IS CONTACTED.

2. INSTALL RADAR DETECTORS PER MANUFACTURER'S STANDARDS. COORDINATE WITH DAVE TOWNSEND (801) 940-0485 FOR PROPER DETECTION PLACEMENT, WITH TWO DAYS ADVANCE NOTICE.

3. PROVIDE AND INSTALL MAST ARM MOUNTED STREET NAME SIGNS WITH MOUNTING BRACKETS. SEE THIS SHEET FOR DETAILS.

4. COORDINATE WITH DAVE TOWNSEND (801) 940-0485 FOR SIGNAL CHANGE OVER. MINIMUM 5 WORKING DAYS ADVANCE NOTICE REQUIRED FOR SIGNAL TURN ON. SIGNAL CHANGE OVER TO BE DONE BETWEEN 9AM AND 3PM. PERFORM ALL NECESSARY WORK PRIOR TO SIGNAL CHANGE OVER FOR MAXIMUM DURATION OF 4 HOURS. COMPLETE SIGNAL TURN ON CHECKLIST.

5. NEW SIGNAL EQUIPMENT MUST BE IN PLACE AND FUNCTIONAL BEFORE REMOVING EXISTING EQUIPMENT.

6. REMOVE EXISTING LOOP BOXES.

7. UTILITIES ARE TO BE BLUESTAKED BEFORE WORK BEGINS. VERIFY LOCATIONS IN FIELD AND PROTECT EXISTING UTILITIES IN PLACE. ADJUST PLACEMENT OF SIGNAL EQUIPMENT ACCORDINGLY. CONTACT DAVE TOWNSEND AT (801) 940-0485 BEFORE DRILLING SIGNAL POLE FOUNDATIONS.
SIGNAL CIRCUIT
2-CONDUCTOR NO. 14 AWG, STRANDED CABLE, IMSA 20-1 WITH NO. 6 AWG STRANDED GROUND WIRE IN 2-INCH CONDUIT

PEDESTRIAN SIGNAL CIRCUIT
7-CONDUCTOR NO. 14 AWG, STRANDED CABLE, IMSA 20-1 IN SAME CONDUIT AS SIGNAL CIRCUIT

PUSH BUTTON CIRCUIT
4-CONDUCTOR NO. 14 AWG, STRANDED CABLE, IMSA 20-1 IN 2 INCH CONDUIT

MATRICES CIRCUIT
SMART SENSOR MATRIX CABLE (SEE SG-02 FOR DETAILS) IN 2-INCH CONDUIT

ADVANCE DETECTION CIRCUIT
SMART SENSOR ADVANCE CABLE (SEE SG-02 FOR DETAILS) IN THE SAME CONDUIT AS MATRIX DETECTION

LIGHTING CIRCUIT
TWO SINGLE-CONDUCTOR CABLE TYPE NHW-3E, IMSA 20-1, 6 AWG STRANDED GROUND WIRE IN 3-INCH CONDUIT

FUTURE USE CONDUIT
TWO 2-INCH CONDUITS WITH DETECTABLE PULL TAPE
CONTRACTOR FURNISHED MATERIALS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>JUNCTION BOX</th>
<th>CONDUIT PLACEMENT</th>
<th>SIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR-63 & LINCOLN AVE</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL

| S | S | S |

NOTES:

1. SEE LOC ST DWG SL. SERIES AND SECTIONS 22802 AND 18530.
2. USE CONTROLLER CABINET FOUNDATION CONDUITS AS FOLLOWS:
 A. SIGNAL CIRCUIT CABLES.
 B. PEDESTRIAN CIRCUIT CABLES.
 C. VIDEO POWER DETECTION CIRCUIT CABLES.
 D. PEDESTRIAN PUSH BUTTON CIRCUIT CABLES.
 E. FUTURE USE (2 CONDUITS)
 F. 120 VOLT POWER CIRCUIT TO THE CONTROLLER CIRCUIT BREAKER OR UNDERGROUND SERVICE PEDESTAL.
3. CONTACT THE SERVING POWER COMPANY A MINIMUM OF THIRTY (30) DAYS BEFORE POWER SERVICE IS REQUIRED. SEE LOC ST DWG SL. 4C FOR UNDERGROUND SERVICES PEDESTAL. DETAILS. CONTACT REGION SIGNAL LAB (SEE SG-501 FOR CONTACT INFORMATION) THREE (3) DAYS IN ADVANCE OF UNDERGROUND SERVICE PEDESTAL INSPECTION. MAKE ALL ARRANGEMENTS WITH LOCAL POWER COMPANY FOR INSTALLATION.
4. PLACE ALL CONDUIT IN SAME TRENCH OR BORE. SHOT WHERE POSSIBLE.
5. CONSTRUCT SIGNAL IN MANNER TO AVOID DAMAGE TO EXISTING UTILITIES. ASSUME RESPONSIBILITY FOR ANY UTILITY DAMAGED BY CONSTRUCTION OPERATIONS. THE PLANS SHOW BURIED UTILITY LOCATIONS IN THEIR APPROXIMATE LOCATION ONLY.
6. SMART SENSOR CABLE: COLOR-CODED, TWISTED PAIR, 6. CONDUCTOR WIRE WITH 20 AWG FOR POWER AND 22 AWG FOR COMMUNICATION. WAVETRONIX PART #: WSN-705 OR APPROVED EQUIVALENT.
State Furnished Materials

Traffic Signal Schedule

<table>
<thead>
<tr>
<th>Location</th>
<th>Pole</th>
<th>Mast Arm</th>
<th>Anchor Bolt</th>
<th>Pole/Extension</th>
<th>Arm</th>
<th>LED/MV Luminaire W/PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-63 & Lincoln Ave</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Highway Lighting Schedule

State Furnished Materials

Detection Schedule

<table>
<thead>
<tr>
<th>Location</th>
<th>Radar Detection System</th>
<th>Audible Ped Push Button</th>
<th>LED Module (15 YR Warranty)</th>
<th>Polymer Section Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-63 & Lincoln Ave</td>
<td>1 4 5 5</td>
<td>5 1 1 1</td>
<td>8 8</td>
<td>8</td>
</tr>
</tbody>
</table>

Signal Head Schedule

<table>
<thead>
<tr>
<th>Location</th>
<th>Radar Detection System</th>
<th>Audible Ped Push Button</th>
<th>LED Module (15 YR Warranty)</th>
<th>Polymer Section Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-63 & Lincoln Ave</td>
<td>1 4 5 5</td>
<td>5 1 1 1</td>
<td>8 8</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:

1. Notify resident engineer 4-6 weeks prior to the date state furnished materials are needed.
2. Pick up state furnished controller cabinet and controller equipment at the region signal lab. Contact region signal crew 10 days prior to desired pick up date. See SG-501 for contact information.
3. Pick up state furnished anchor bolts, signal pole steel, and other electronics hardware at state warehouse. Provide loading equipment and personnel for pickup. Contact Greg Palmer, (801) 935-4250, to schedule pickup. Minimum 48 hours advance notice required.
4. The signal head that is the closest to the highest point of the roadway surface must have a clearance of 18.5 ft minimum and 13.5 ft maximum between the bottom of the signal head assembly and the roadway surface. A minimum of 11.5 ft clearance is allowed with written approval from the region traffic operations engineer. Level the remaining signal heads to the same bottom elevation.

* Polymer section head assemblies include signal head housing, visors, and covered back plate with retroreflective tape when applicable.
ATMS WIRE SCHEDULE SUMMARY

1. STRAND PRE-TERMINATED DROP CABLE
2. Existing 48 SMF Fiber

NOTES:
1. UTILITIES ARE TO BE BLUE STAKED BEFORE WORK BEGINS. VERIFY LOCATIONS IN FIELD AND PROTECT EXISTING UTILITIES IN PLACE. ADJUST PLACEMENT OF EQUIPMENT ACCORDINGLY.
2. CONDUIT PATHS SHOWN ON PLANS MAY NOT REPRESENT ACTUAL FIELD LOCATION AND CONDITIONS. FIELDLOCATE ALL NEW CONDUIT, EXISTING CONDUIT, JUNCTION BOXES, AND UTILITIES BEFORE CONSTRUCTION.
3. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
4. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
5. ALL ATMS CONDUITS TO BE INSTALLED A MINIMUM OF 3 FT BELOW FINISHED ROADWAY GRADE. IF MINIMUM INSTALLATION DEPTH IS UNOBTAINABLE, ADJUST PLACEMENT OF UTILITIES ACCORDINGLY.
6. CONTACT LEON HADLEY AT (801) 887-3765 AFTER ATMS WORK IS COMPLETED FOR ATMS INSPECTION.

POLYMER CONCRETE JUNCTION BOX, TIER 22. TYPE III REQ'D
(LID MARKED WITH "COMMUNICATION" LABEL)

ONE 3-INCH CONDUIT REQ'D

CONNECT 3-INCH CONDUIT WITH EXISTING ATMS CONDUIT.

TYPE A SPLICE ENCLOSURE REQ'D

FUSION SPLICE REQ'D

#1
t#2
t#3
t#4
t#5

Existing ATMS Interconnect Manhole

 Existing ATMS Interconnect Manhole

SR-53 (24TH STREET)
40 MPH

SR-53 (24TH STREET)
30 MPH

30 MPH LINCOLN AVE

30 MPH LINCOLN AVE

NOTES:
1. UTILITIES ARE TO BE BLUE STAKED BEFORE WORK BEGINS. VERIFY LOCATIONS IN FIELD AND PROTECT EXISTING UTILITIES IN PLACE. ADJUST PLACEMENT OF EQUIPMENT ACCORDINGLY.
2. CONDUIT PATHS SHOWN ON PLANS MAY NOT REPRESENT ACTUAL FIELD LOCATION AND CONDITIONS. FIELDLOCATE ALL NEW CONDUIT, EXISTING CONDUIT, JUNCTION BOXES, AND UTILITIES BEFORE CONSTRUCTION.
3. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
4. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
5. ALL ATMS CONDUITS TO BE INSTALLED A MINIMUM OF 3 FT BELOW FINISHED ROADWAY GRADE. IF MINIMUM INSTALLATION DEPTH IS UNOBTAINABLE, ADJUST PLACEMENT OF UTILITIES ACCORDINGLY.
6. CONTACT LEON HADLEY AT (801) 887-3765 AFTER ATMS WORK IS COMPLETED FOR ATMS INSPECTION.

POLYMER CONCRETE JUNCTION BOX, TIER 22. TYPE III REQ'D
(LID MARKED WITH "COMMUNICATION" LABEL)

ONE 3-INCH CONDUIT REQ'D

CONNECT 3-INCH CONDUIT WITH EXISTING ATMS CONDUIT.

TYPE A SPLICE ENCLOSURE REQ'D

FUSION SPLICE REQ'D

#1
t#2
t#3
t#4
t#5

Existing ATMS Interconnect Manhole

 Existing ATMS Interconnect Manhole

SR-53 (24TH STREET)
40 MPH

SR-53 (24TH STREET)
30 MPH

30 MPH LINCOLN AVE

30 MPH LINCOLN AVE

NOTES:
1. UTILITIES ARE TO BE BLUE STAKED BEFORE WORK BEGINS. VERIFY LOCATIONS IN FIELD AND PROTECT EXISTING UTILITIES IN PLACE. ADJUST PLACEMENT OF EQUIPMENT ACCORDINGLY.
2. CONDUIT PATHS SHOWN ON PLANS MAY NOT REPRESENT ACTUAL FIELD LOCATION AND CONDITIONS. FIELDLOCATE ALL NEW CONDUIT, EXISTING CONDUIT, JUNCTION BOXES, AND UTILITIES BEFORE CONSTRUCTION.
3. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
4. FIELD VERIFY CONDUIT AND CABLING QUANTITIES BEFORE ORDERING.
5. ALL ATMS CONDUITS TO BE INSTALLED A MINIMUM OF 3 FT BELOW FINISHED ROADWAY GRADE. IF MINIMUM INSTALLATION DEPTH IS UNOBTAINABLE, ADJUST PLACEMENT OF UTILITIES ACCORDINGLY.
6. CONTACT LEON HADLEY AT (801) 887-3765 AFTER ATMS WORK IS COMPLETED FOR ATMS INSPECTION.

POLYMER CONCRETE JUNCTION BOX, TIER 22. TYPE III REQ'D
(LID MARKED WITH "COMMUNICATION" LABEL)

ONE 3-INCH CONDUIT REQ'D

CONNECT 3-INCH CONDUIT WITH EXISTING ATMS CONDUIT.

TYPE A SPLICE ENCLOSURE REQ'D

FUSION SPLICE REQ'D

#1
t#2
t#3
t#4
t#5

Existing ATMS Interconnect Manhole

 Existing ATMS Interconnect Manhole

SR-53 (24TH STREET)
40 MPH

SR-53 (24TH STREET)
30 MPH

30 MPH LINCOLN AVE

30 MPH LINCOLN AVE
ATMS Schedule Sheet

<table>
<thead>
<tr>
<th>Communications</th>
<th>CCTV</th>
<th>Polymer</th>
<th>Concrete</th>
<th>ATMS</th>
<th>Salvage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>EA</td>
<td>EA</td>
<td>EA</td>
<td>EA</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>USE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

1. Notify resident engineer 4-6 weeks prior to date materials are needed.
2. Contact region traffic management project manager regarding state furnished ATMS materials requisition after preconstruction meeting to ensure materials have been ordered.
3. Contact region traffic management project manager to schedule delivery date.
4. Salvage existing equipment and return to appropriate region traffic management project manager to schedule delivery date.

Definitions:

- **State Furnished and Installed:**
- **Contractor Furnished and Installed:**
- **State Furnished and Contractor Installed:**
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Std Dwg</th>
<th>Spec</th>
<th>Unit</th>
<th>M&P</th>
<th>Average Price</th>
<th>Qty</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Mobilization for Installation, Upgrade, or Repair - Box Elder, Cache, Rich Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$1,008.33</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>2 Mobilization for Installation, Upgrade, or Repair - Weber, Morgan Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$866.67</td>
<td>1</td>
<td>$866.67</td>
</tr>
<tr>
<td>3 Mobilization for Installation, Upgrade, or Repair - Tooele, Summit, Wasatch, Utah Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$900.00</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>4 Mobilization for Installation, Upgrade, or Repair - Davis, Salt Lake Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$700.00</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>5 Mobilization for Installation, Upgrade, or Repair - Iron, Garfield, Kane, Washington Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$2,550.00</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>6 Mobilization for Installation, Upgrade, or Repair - Beaver, Piute, Wayne, Millard, Sevier, Emery, Juab, Sanpete, Carbon, Duchesne Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$2,136.67</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>7 Mobilization for Installation, Upgrade, or Repair - Grand, Uintah, Daggett, San Juan Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$2,400.00</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>8 Mobilization for Small Project Upgrades or Repair - Weber and Davis Counties</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$523.33</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>9 Mobilization for Small Project Upgrades or Repair - Salt Lake County</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$473.33</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>10 Mobilization for Small Project Upgrades or Repair - Utah County</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>$656.67</td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>11 Mobilization for Emergency Work (additional to items 1-10)</td>
<td>01285</td>
<td>Lump</td>
<td></td>
<td></td>
<td>Paid in addition to items 1-10 for mobilization to an "Emergency" site as directed by Traffic & Safety</td>
<td></td>
<td>$953.33</td>
</tr>
<tr>
<td>12 Deliver steel materials at Intermountain Galvanizing, 1085 West 400 North, Lindon, Utah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lump</td>
<td></td>
<td>$366.67</td>
</tr>
<tr>
<td>13 Receive coated steel materials at Intermountain Galvanizing, 1085 West 400 North, Lindon, Utah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lump</td>
<td></td>
<td>$366.67</td>
</tr>
<tr>
<td>14 Public Involvement</td>
<td>01315</td>
<td>Lump</td>
<td></td>
<td></td>
<td>Paid as defined in Attachment B, "Preparatory work and operations necessary for moving personnel, equipment, supplies, and incidentals to the project site prior to beginning work." Mobilization specification. Includes time and travel for pre-construction meetings.</td>
<td></td>
<td>$266.67</td>
</tr>
</tbody>
</table>

Traffic Control (TC)

15 Set Up TC Beyond Shoulder TC 01554 Each Excludes short-duration closures (less than 60 min.) Includes transport of all traffic control materials to/from project site, set up, maintain, and remove a specified lane or shoulder closure. If the set up is reconfigured, it will become a Maintain Traffic Control item. | $128.67 | | $0.00 |
16 Set Up TC Shoulder Closure TC 01554 Each Each change in location of on-site Traffic Control setup will count as one "Maintain" item.	$181.67	4	$726.67						
17 Set Up TC Single Lane Closure TC 01554 Each Each	$246.67	5	$1,233.33						
18 Set Up TC Two Lane Closure TC 01554 Each Each	$286.67	1	$286.67						
19 Maintain TC Beyond Shoulder TC 01554 Each Excludes short-duration closures (less than 60 min.)	$86.67		$0.00						
20 Maintain TC Shoulder Closure TC 01554 Each Each change in location of on-site Traffic Control setup will count as one "Maintain" item.	$103.33	20	$2,066.67						
21 Maintain TC Single Lane Closure TC 01554 Each Each	$111.67	20	$2,233.33						
22 Maintain TC Two Lane Closure TC 01554 Each Each	$120.00	1	$120.00						
23 Flagging TC 01554 Hour Use of non-certified flaggers will result in non-payment of this item.	$24.33		$0.00						
24 Utah Highway Patrol or Local Police Pass Through Only						Requires UHP Invoice for payment. No mark-ups allowed on this item. Max 4 hrs unless otherwise approved.	$50.00		$0.00
Removal

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Code</th>
<th>Rate/Unit</th>
<th>Unit</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Advance Warning Arrow Panel</td>
<td>TC</td>
<td>01554</td>
<td>Dev/day</td>
<td>$62.67</td>
</tr>
<tr>
<td>Variable Message Sign (VMS)</td>
<td>TC</td>
<td>01554</td>
<td>Dev/day</td>
<td>$135.67</td>
</tr>
<tr>
<td>Remove Manhole</td>
<td>02221</td>
<td>Each</td>
<td></td>
<td>$1,442.00</td>
</tr>
<tr>
<td>Remove Concrete Sidewalk</td>
<td>02221</td>
<td>Sq ft</td>
<td></td>
<td>$2.49</td>
</tr>
<tr>
<td>Remove Curb & Gutter</td>
<td>02221</td>
<td>Foot</td>
<td></td>
<td>$14.54</td>
</tr>
<tr>
<td>Remove Concrete Driveway</td>
<td>02221</td>
<td>Sq ft</td>
<td></td>
<td>$7.47</td>
</tr>
<tr>
<td>Remove Concrete Pavement</td>
<td>02221</td>
<td>Sq yd</td>
<td></td>
<td>$21.40</td>
</tr>
<tr>
<td>Remove Asphalt Pavement</td>
<td>02221</td>
<td>Sq yd</td>
<td></td>
<td>$12.67</td>
</tr>
<tr>
<td>Remove Mast Arm Signal Pole - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$281.33</td>
</tr>
<tr>
<td>Remove Mast Arm & Signal Heads - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$513.82</td>
</tr>
<tr>
<td>Remove Signal Pole Foundation - Top 18"</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$335.12</td>
</tr>
<tr>
<td>Remove Luminaire Extension, Arm - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$186.78</td>
</tr>
<tr>
<td>Remove Highway Luminaire, Arm - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$159.16</td>
</tr>
<tr>
<td>Remove Highway Luminaire Pole Foundation - Top 18"</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$206.57</td>
</tr>
<tr>
<td>Remove Traffic Signal Pole - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$283.97</td>
</tr>
<tr>
<td>Remove Traffic Signal Pole Foundation - Top 18"</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$300.42</td>
</tr>
<tr>
<td>Remove Signal Cabinet & Foundation</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$510.04</td>
</tr>
<tr>
<td>Remove Power Pedestal & Foundation</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$164.88</td>
</tr>
<tr>
<td>Remove Power Meter Base</td>
<td></td>
<td></td>
<td>Each</td>
<td>$277.88</td>
</tr>
<tr>
<td>Remove Plastic Junction Box</td>
<td></td>
<td></td>
<td></td>
<td>$144.74</td>
</tr>
<tr>
<td>Remove Type I Junction Box</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$144.74</td>
</tr>
<tr>
<td>Remove Type II Junction Box</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$146.96</td>
</tr>
<tr>
<td>Remove Type III Junction Box</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$175.32</td>
</tr>
<tr>
<td>Remove Wire from Conduit</td>
<td>02221</td>
<td>Foot</td>
<td></td>
<td>$0.29</td>
</tr>
<tr>
<td>Remove Tree - less than or equal to 15’ tall</td>
<td>02221</td>
<td>Each</td>
<td></td>
<td>$559.51</td>
</tr>
<tr>
<td>Remove Tree - greater than 15’ tall</td>
<td>02221</td>
<td>Each</td>
<td></td>
<td>$1,091.67</td>
</tr>
<tr>
<td>Remove Overhead Device - Salvage/Remove</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$195.00</td>
</tr>
<tr>
<td>Remove Highway Luminaire Pole - Salvage/Remove</td>
<td></td>
<td></td>
<td>Each</td>
<td>$280.00</td>
</tr>
<tr>
<td>Drop Inlet Barrier</td>
<td>EN</td>
<td>01571</td>
<td>Foot</td>
<td>$12.51</td>
</tr>
<tr>
<td>Site Clearing and Grubbing</td>
<td>02231</td>
<td>Sq yd</td>
<td></td>
<td>$3.18</td>
</tr>
<tr>
<td>Roadway Excavation</td>
<td>02316</td>
<td>Cu Yd</td>
<td></td>
<td>$17.07</td>
</tr>
<tr>
<td>Free Draining Granular Backfill Borrow</td>
<td>02056</td>
<td>Ton</td>
<td></td>
<td>$36.29</td>
</tr>
<tr>
<td>Untreated Base Course</td>
<td>02721</td>
<td>Ton</td>
<td></td>
<td>$133.33</td>
</tr>
<tr>
<td>Flowable Fill</td>
<td>03575</td>
<td>Cu Yd</td>
<td></td>
<td>$133.33</td>
</tr>
</tbody>
</table>

Roadway

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Code</th>
<th>Rate/Unit</th>
<th>Unit</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Inlet Barriere</td>
<td>EN</td>
<td>01571</td>
<td>Foot</td>
<td>$12.51</td>
</tr>
<tr>
<td>Site Clearing and Grubbing</td>
<td>02231</td>
<td>Sq yd</td>
<td></td>
<td>$3.18</td>
</tr>
<tr>
<td>Roadway Excavation</td>
<td>02316</td>
<td>Cu Yd</td>
<td></td>
<td>$17.07</td>
</tr>
<tr>
<td>Free Draining Granular Backfill Borrow</td>
<td>02056</td>
<td>Ton</td>
<td></td>
<td>$36.29</td>
</tr>
<tr>
<td>Untreated Base Course</td>
<td>02721</td>
<td>Ton</td>
<td></td>
<td>$133.33</td>
</tr>
<tr>
<td>Flowable Fill</td>
<td>03575</td>
<td>Cu Yd</td>
<td></td>
<td>$133.33</td>
</tr>
</tbody>
</table>

This item is intended as additional warning within a full TC closure or as requested by. This item is for removal of both elements & includes restoration of the area to surrounding conditions. Removal of the cabinet only is considered part of the "Size 6 Signal Cabinet" item. This item is for permanent removal and restoration of the area. Removal as part of replacement is incidental to the "Underground Service Pedestal" items, below. Includes removal of pipe, cable, meter base, switch, (all above ground elements) and coordination with local serving power company. These items are intended for remove-only operations. They are not intended for use in combination with new box installations or replacements. These items are not applicable when used in conjunction with UDOT specifications regarding conduit and boxes for ATMS; those items are to include the cost of Flowable Fill installation. Includes transport.
<table>
<thead>
<tr>
<th></th>
<th>Item Description</th>
<th>Code</th>
<th>Unit</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Hot Mix Asphalt 1/2" nominal</td>
<td>02741</td>
<td>Ton</td>
<td></td>
<td>$165.67</td>
<td>$0.00</td>
</tr>
<tr>
<td>58</td>
<td>Hot Mix Asphalt 3/4" nominal</td>
<td>02741</td>
<td>Ton</td>
<td></td>
<td>$178.50</td>
<td>$0.00</td>
</tr>
<tr>
<td>59</td>
<td>Portland Cement Concrete Pavement 7 inch Thick</td>
<td>02752</td>
<td>Sq Ft</td>
<td></td>
<td>$9.93</td>
<td>$0.00</td>
</tr>
<tr>
<td>60</td>
<td>Curb & Gutter - Less than 50 feet</td>
<td>GW</td>
<td>Foot</td>
<td></td>
<td>$27.56</td>
<td>$0.00</td>
</tr>
<tr>
<td>61</td>
<td>Curb & Gutter- Greater than 50 feet</td>
<td>GW</td>
<td>Foot</td>
<td>45</td>
<td>$1,095.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>62</td>
<td>Concrete Curb - Less than 50 feet</td>
<td>GW</td>
<td>Foot</td>
<td></td>
<td>$21.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>63</td>
<td>Concrete Curb - Greater than 50 feet</td>
<td>GW</td>
<td>Foot</td>
<td></td>
<td>$20.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>64</td>
<td>Plowable End Section</td>
<td>GW</td>
<td>Each</td>
<td></td>
<td>$683.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>65</td>
<td>Concrete Driveway, 6 inch thick</td>
<td>GW</td>
<td>Sq Ft</td>
<td></td>
<td>$10.12</td>
<td>$0.00</td>
</tr>
<tr>
<td>66</td>
<td>Concrete Sidewalk</td>
<td>GW</td>
<td>Sq Ft</td>
<td></td>
<td>$6.92</td>
<td>$242.08</td>
</tr>
<tr>
<td>67</td>
<td>Pedestrian Access Ramp</td>
<td>GW</td>
<td>Sq Ft</td>
<td></td>
<td>$8.74</td>
<td>$1,109.56</td>
</tr>
<tr>
<td>68</td>
<td>Detectable Warning Surface</td>
<td>GW</td>
<td>Sq Ft</td>
<td></td>
<td>$29.92</td>
<td>$478.72</td>
</tr>
<tr>
<td>69</td>
<td>Reconstruct Manhole</td>
<td>CB</td>
<td>Each</td>
<td></td>
<td>$1,113.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>70</td>
<td>Reconstruct Valve Box</td>
<td>CB</td>
<td>Each</td>
<td></td>
<td>$368.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>71</td>
<td>Reconstruct Catch Basin or Cleanout Box</td>
<td>CB</td>
<td>Each</td>
<td></td>
<td>$1,263.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>72</td>
<td>Solid cover or bicycle-safe grate and frame</td>
<td>GF</td>
<td>Each</td>
<td></td>
<td>$786.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>73</td>
<td>Open-Curb frame w/ bicycle safe grate</td>
<td>GF</td>
<td>Each</td>
<td></td>
<td>$732.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>74</td>
<td>New Catch Basin - Structural Concrete</td>
<td>CB</td>
<td>Cu Yd</td>
<td></td>
<td>$905.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>75</td>
<td>New Catch Basin - Reinforcing Steel</td>
<td>CB</td>
<td>Pound</td>
<td></td>
<td>$2.79</td>
<td>$0.00</td>
</tr>
<tr>
<td>76</td>
<td>New Catch Basin - Precast</td>
<td>CB</td>
<td>Each</td>
<td></td>
<td>$1,545.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>77</td>
<td>18" to 30" HDPE Pipe, Class C</td>
<td>DG</td>
<td>Foot</td>
<td></td>
<td>$42.46</td>
<td>$0.00</td>
</tr>
<tr>
<td>78</td>
<td>18" to 30" HDPE Pipe Tap to Existing Catch Basin</td>
<td>DG</td>
<td>Each</td>
<td></td>
<td>$604.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>79</td>
<td>18" to 30" Concrete Pipe 6-foot section</td>
<td>DG</td>
<td>Each</td>
<td></td>
<td>$318.50</td>
<td>$0.00</td>
</tr>
<tr>
<td>80</td>
<td>Relocate Fire Hydrant - up to 10 feet</td>
<td>00727</td>
<td>Foot</td>
<td></td>
<td>$76.77</td>
<td>$0.00</td>
</tr>
<tr>
<td>81</td>
<td>Replace Fire Hydrant</td>
<td>00727</td>
<td>Each</td>
<td></td>
<td>$3,943.33</td>
<td>$0.00</td>
</tr>
<tr>
<td>82</td>
<td>Landscape Grading</td>
<td>02922</td>
<td>Sq yd</td>
<td></td>
<td>$3.58</td>
<td>$0.00</td>
</tr>
<tr>
<td>83</td>
<td>Topsoil</td>
<td>02912</td>
<td>Sq yd</td>
<td></td>
<td>$12.95</td>
<td>$0.00</td>
</tr>
<tr>
<td>84</td>
<td>Turf Sod</td>
<td>02922</td>
<td>Sq Ft</td>
<td></td>
<td>$2.62</td>
<td>$0.00</td>
</tr>
<tr>
<td>85</td>
<td>Irrigation - Sch 40 1-1/2" PVC Pipe w/ Fittings</td>
<td>02610</td>
<td>Foot</td>
<td></td>
<td>$3.54</td>
<td>$0.00</td>
</tr>
<tr>
<td>86</td>
<td>Irrigation - Sch 40 3/4" PVC Pipe w/ Fittings</td>
<td>02610</td>
<td>Foot</td>
<td></td>
<td>$2.35</td>
<td>$0.00</td>
</tr>
<tr>
<td>87</td>
<td>Irrigation - Sprinkler Head w/ Riser</td>
<td>Each</td>
<td></td>
<td></td>
<td>$60.07</td>
<td>$0.00</td>
</tr>
<tr>
<td>88</td>
<td>Pothole for Utilities</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$301.67</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Underground

<table>
<thead>
<tr>
<th></th>
<th>Item Description</th>
<th>Code</th>
<th>Unit</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Pothole for Utilities</td>
<td>02892</td>
<td>Each</td>
<td></td>
<td>$301.67</td>
<td>$0.00</td>
</tr>
</tbody>
</table>
Mast Arm Signal Pole Foundation - 3' x 12'' - by Digger Derrick
- **Part Number**: SL 02466
- **Quantity**: Each
- **Price**: $2,740.67

Includes installation of concrete foundation, anchor bolts, and hardware to mount foundation to base of pole, and associated potholing.

Highway Luminare Pole Foundation - 2.5' x 8'' - by Digger Derrick
- **Part Number**: SL 02466
- **Quantity**: Each
- **Price**: $1,470.00

Includes installation of concrete foundation, anchor bolts, and hardware to mount foundation to base of pole.

Highway Luminare Pole Foundation in Groundwater or Sloughing Conditions
- **Part Number**: SL 02466
- **Quantity**: Each
- **Price**: $2,076.67

Additional Cost for Rocky Soil Conditions
- **Part Number**: SL 02466
- **Quantity**: Each
- **Price**: $1,916.67

Size 6 Cabinet Foundation - Cast in Place
- **Part Number**: SL 02892
- **Quantity**: Each
- **Price**: $1,260.67

Conduit cost
- **Part Number**: AT 13553
- **Quantity**: Foot
- **Price**: $8.44

Pole Standoff Bracket
- **Part Number**: AT 13553
- **Quantity**: Each
- **Price**: $27.70

Conduit trenched in Native Soil, 18'' cover
- **Part Number**: AT 13553
- **Quantity**: Each
- **Price**: $4.33

Conduit trenched in Native Soil, 24'' cover
- **Part Number**: AT 13553
- **Quantity**: Each
- **Price**: $5.52

Additional Cost for Rocky Soil Conditions for Trenching in Native Soil
- **Part Number**: AT 13553
- **Quantity**: Foot
- **Price**: $2.02

Wire/Electrical
- **Part Number**: AT 13554
- **Quantity**: Each
- **Price**: $775.00

Includes all items to meet UDOT standard - backfill, flowable fill, maintenance markers, conduit plugs, grounding materials, a locate ball or disk, ground rod (if needed), grouting, 10'' collar, bolts, etc.

Additional Cost for Rocky Soil Conditions for Conduits Bored
- **Part Number**: AT 13553
- **Quantity**: Foot
- **Price**: $3.67

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Part Number</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast Arm Signal Pole Foundation - 3' x 12'' - by Digger Derrick</td>
<td>SL 02466</td>
<td>Each</td>
<td>$2,740.67</td>
</tr>
<tr>
<td>Highway Luminare Pole Foundation - 2.5' x 8'' - by Digger Derrick</td>
<td>SL 02466</td>
<td>Each</td>
<td>$1,470.00</td>
</tr>
<tr>
<td>Height of Mast Arm</td>
<td>AT 13553</td>
<td>Foot</td>
<td>$8.44</td>
</tr>
<tr>
<td>Pole Standoff Bracket</td>
<td>AT 13553</td>
<td>Each</td>
<td>$27.70</td>
</tr>
<tr>
<td>Conduit trenched in Native Soil, 18'' cover</td>
<td>AT 13553</td>
<td>Each</td>
<td>$4.33</td>
</tr>
<tr>
<td>Conduit trenched in Native Soil, 24'' cover</td>
<td>AT 13553</td>
<td>Each</td>
<td>$5.52</td>
</tr>
<tr>
<td>Additional Cost for Rocky Soil Conditions for Trenching in Native Soil</td>
<td>AT 13553</td>
<td>Foot</td>
<td>$2.02</td>
</tr>
<tr>
<td>Type I-Polymer Concrete Junction Box</td>
<td>AT 13554</td>
<td>Each</td>
<td>$775.00</td>
</tr>
<tr>
<td>Type II-Polymer Concrete Junction Box</td>
<td>AT 13554</td>
<td>Each</td>
<td>$1,007.00</td>
</tr>
<tr>
<td>Type III-Polymer Concrete Junction Box - Divided</td>
<td>AT 13554</td>
<td>Each</td>
<td>$1,030.33</td>
</tr>
<tr>
<td>Type III-Polymer Concrete Junction Box</td>
<td>AT 13554</td>
<td>Each</td>
<td>$1,246.67</td>
</tr>
<tr>
<td>IMSA - 2 wire, AWG 14 gage</td>
<td>AT 13554</td>
<td>Foot</td>
<td>$0.83</td>
</tr>
<tr>
<td>IMSA - 4 wire, AWG 14 gage</td>
<td>AT 13554</td>
<td>Foot</td>
<td>$1.07</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Unit</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>132</td>
<td>IMSA 20-1, 7 wire, AWG 14 gage</td>
<td>Foot</td>
<td>02892</td>
</tr>
<tr>
<td>133</td>
<td>Cable - State Furnished</td>
<td>Foot</td>
<td>02892</td>
</tr>
<tr>
<td>134</td>
<td>Radar Detection Cable - Contractor Furnished</td>
<td>Foot</td>
<td>02892</td>
</tr>
<tr>
<td>135</td>
<td>Preemption System Cable - Contractor Furnished</td>
<td>Foot</td>
<td>02892</td>
</tr>
<tr>
<td>136</td>
<td>RHH-USE2-RHW2, 2 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>137</td>
<td>RHH-USE2-RHW2, 4 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>138</td>
<td>RHH-USE2-RHW2, 6 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>139</td>
<td>RHH-USE2-RHW2, 8 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>140</td>
<td>RHH-USE2-RHW2, 10 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>141</td>
<td>RHH-USE2-RHW2, 12 gage</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>142</td>
<td>Bare Copper Ground Wire, No. 6</td>
<td>Foot</td>
<td>16525</td>
</tr>
<tr>
<td>143</td>
<td>Ground Rod 3/4" x 10'</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>144</td>
<td>Power Source, Underground Service Pedestal - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>145</td>
<td>Power Source, Underground Service Pedestal - Contractor Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>146</td>
<td>Battery-Backup Pedestal -- State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>147</td>
<td>Pad-Mounted 480 V, 25, 50, or 75 kVA Transformer</td>
<td>Each</td>
<td>13555</td>
</tr>
<tr>
<td>ATMS</td>
<td>72 SMF Bulk Fiber Cable</td>
<td>Foot</td>
<td>13594</td>
</tr>
<tr>
<td>149</td>
<td>48 SMF Bulk Fiber Cable</td>
<td>Foot</td>
<td>13594</td>
</tr>
<tr>
<td>150</td>
<td>24 SMF Bulk Fiber Cable</td>
<td>Foot</td>
<td>13594</td>
</tr>
<tr>
<td>151</td>
<td>Cat 5 Outdoor-rated Cable - Contractor Furnished</td>
<td>Foot</td>
<td>13594</td>
</tr>
<tr>
<td>152</td>
<td>6 Strand Pre-terminated Drop Cable - Contractor Furnished (300 ft or less)</td>
<td>Each</td>
<td>13594</td>
</tr>
<tr>
<td>153</td>
<td>6 Strand Pre-terminated Drop Cable - Contractor Furnished (300 ft or more)</td>
<td>Each</td>
<td>13594</td>
</tr>
<tr>
<td>154</td>
<td>Type A Splice Case</td>
<td>Each</td>
<td>13594</td>
</tr>
<tr>
<td>155</td>
<td>Type B Splice Case</td>
<td>Each</td>
<td>13594</td>
</tr>
<tr>
<td>156</td>
<td>Fusion Splice</td>
<td>Each</td>
<td>13594</td>
</tr>
<tr>
<td>157</td>
<td>CCTV Camera Cable - Contractor Furnished</td>
<td>Foot</td>
<td>13556</td>
</tr>
<tr>
<td>158</td>
<td>CCTV Camera & Mount - State Furnished</td>
<td>Each</td>
<td>13556</td>
</tr>
<tr>
<td>159</td>
<td>CCTV Camera & Mount - Relocate</td>
<td>Each</td>
<td>13556</td>
</tr>
<tr>
<td>160</td>
<td>Wireless Radio - State Furnished</td>
<td>Each</td>
<td>13558</td>
</tr>
<tr>
<td>Signal</td>
<td>Mast Arm Signal Pole (for all arm lengths) - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>162</td>
<td>Mast Arm Signal Pole Base Adapter - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>163</td>
<td>30 - 55 ft Mast Arm - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>164</td>
<td>80 - 75 ft Mast Arm - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>165</td>
<td>80 - 85 ft Mast Arm - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>166</td>
<td>Mast Arm Field Cut</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>167</td>
<td>5.5', 11' or 15', Traffic Signal/Ped Pole - State Furnished</td>
<td>Each</td>
<td>02892</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Code</td>
<td>Quantity</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>168</td>
<td>Size 6 Cabinet - State Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>169</td>
<td>Pole-mounted Cabinet/Controller - Contractor Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>170</td>
<td>Type 0 Signal Head w/ LED Module & Flasher relay</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>171</td>
<td>Type I, II, III Signal Head w/ LED Modules</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>172</td>
<td>Type IV, VI Signal Head w/ LED Modules</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>173</td>
<td>Type VII Signal Head w/ LED Modules</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>174</td>
<td>Type V Signal Head w/ LED Modules</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>175</td>
<td>Relocate Signal Head</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>176</td>
<td>LED Ball or Arrow Signal Module - State Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>177</td>
<td>Backplate with retroreflective tape</td>
<td>SL</td>
<td>Each</td>
</tr>
<tr>
<td>178</td>
<td>Retroreflective tape installed in field</td>
<td>SL</td>
<td>Each</td>
</tr>
<tr>
<td>179</td>
<td>Mounting Bracket for Existing Signal Head</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>180</td>
<td>Blank-Out Sign 24" X 24" - State Furnished</td>
<td>SL</td>
<td>Each</td>
</tr>
<tr>
<td>181</td>
<td>Blank-Out Sign - State Furnished</td>
<td>SL</td>
<td>Each</td>
</tr>
<tr>
<td>182</td>
<td>Pedestrian Signal Clamshell Assembly</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>183</td>
<td>Relocate Pedestrian Signal Clamshell Assembly</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>184</td>
<td>LED Pedestrian Signal Module, Countdown - Contractor Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>185</td>
<td>LED Pedestrian Signal Module, Countdown - State Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>186</td>
<td>Pedestrian Push Button Assembly & Sign</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>187</td>
<td>Audible Pedestrian Signal/Push Button/Sign Assembly - Contractor Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>188</td>
<td>Relocate Pedestrian Push Button Assembly & Sign</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>189</td>
<td>Pedestrian Push Button Frame Stand-off Bracket</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>190</td>
<td>Mast Arm Mounted Sign - Contractor Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>191</td>
<td>Relocate Mast Arm Mounted Sign</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>192</td>
<td>Preemption Mast Arm Mounted Sign - State Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>193</td>
<td>Radar Detection Sensor - State Furnished</td>
<td>SL 02892</td>
<td>Each</td>
</tr>
<tr>
<td>194</td>
<td>Blank-Out Sign - State Furnished</td>
<td>Each</td>
<td>Includes mounting hardware.</td>
</tr>
<tr>
<td>195</td>
<td>Blank-Out Sign - State Furnished</td>
<td>Each</td>
<td>Includes mounting hardware.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Code</td>
<td>Unit</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>195</td>
<td>20', 30', or 40' Signal Pole Luminaire Extension - State Furnished</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>196</td>
<td>Single or Dual 10' Arm or 15' Arm, or Vertical Extension for Luminaire - State Furnished</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>197</td>
<td>Rotate Luminaire Extension</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>198</td>
<td>Relocate Luminaire Extension</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>199</td>
<td>Highway Luminaire Pole - State Furnished</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>200</td>
<td>Relocate Luminaire Pole, Arm and Fixture</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td>201</td>
<td>LED Luminaire - State Furnished</td>
<td>SL 16525</td>
<td>Each</td>
</tr>
<tr>
<td></td>
<td>Lighting Section Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Remove Pavement Marking Paint by Water Blasting</td>
<td>02765</td>
<td>Foot</td>
</tr>
<tr>
<td>203</td>
<td>Remove Pavement Message by Water Blasting</td>
<td>02765</td>
<td>Each</td>
</tr>
<tr>
<td>204</td>
<td>Grooving for Thermoplastic Message/Marking on Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Pavement Marking Paint - 4" White or Yellow</td>
<td>ST 02765</td>
<td>Foot</td>
</tr>
<tr>
<td>206</td>
<td>Pavement Marking Paint - 8" White</td>
<td>ST 02765</td>
<td>Foot</td>
</tr>
<tr>
<td>207</td>
<td>Pavement Marking Paint - 12" White</td>
<td>ST 02765</td>
<td>Foot</td>
</tr>
<tr>
<td>208</td>
<td>Pavement Marking Paint - 24" White</td>
<td>ST 02765</td>
<td>Foot</td>
</tr>
<tr>
<td>209</td>
<td>Pavement Message</td>
<td>ST 02765</td>
<td>Each</td>
</tr>
<tr>
<td>210</td>
<td>Pavement Message (crosswalks, stop lines)</td>
<td>ST 02765</td>
<td>Foot</td>
</tr>
<tr>
<td>211</td>
<td>Thermoplastic Message</td>
<td>ST 02891</td>
<td>Each</td>
</tr>
<tr>
<td>212</td>
<td>Thermoplastic Message (crosswalk, stop lines)</td>
<td>ST 02768</td>
<td>Foot</td>
</tr>
<tr>
<td>213</td>
<td>Slipbase Ground Mounted Tubular Steel Sign Post</td>
<td>SN 02891</td>
<td>Each</td>
</tr>
<tr>
<td>214</td>
<td>Steel Post Sign Mount, Less than 3' wide</td>
<td>SN 02891</td>
<td>Each</td>
</tr>
<tr>
<td>215</td>
<td>Steel Post Sign Mount, 3' or wider</td>
<td>SN 02891</td>
<td>Each</td>
</tr>
<tr>
<td>216</td>
<td>Wood Post Sign Mount</td>
<td>02891</td>
<td>Each</td>
</tr>
<tr>
<td>217</td>
<td>Auxiliary Sign Type A</td>
<td>02891</td>
<td>Sq Ft</td>
</tr>
<tr>
<td>218</td>
<td>Auxiliary Sign Type P</td>
<td>02891</td>
<td>Sq Ft</td>
</tr>
<tr>
<td>219</td>
<td>Relocate Wood Post-Mounted Sign or Mailbox</td>
<td>01891</td>
<td>Each</td>
</tr>
<tr>
<td>220</td>
<td>Relocate Slippbase Steel Post-Mounted Sign</td>
<td>SN 02891</td>
<td>Each</td>
</tr>
<tr>
<td>221</td>
<td>Remove Sign Less than 20 sq ft</td>
<td>02891</td>
<td>Each</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Section Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Troubleshooting/onsite consulting</td>
<td></td>
<td>Hour</td>
</tr>
<tr>
<td>223</td>
<td>Per Diem Hotel</td>
<td></td>
<td>Per hotel room per night. Standard UDOT rates apply.</td>
</tr>
<tr>
<td>224</td>
<td>Per Diem Meal</td>
<td></td>
<td>Per individual per day. Standard UDOT rates apply.</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Amount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Furnished Materials (from form)</td>
<td>$64,437.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATMS State Furnished (from form)</td>
<td>$750.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Engineering - In-House</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Engineering - Consultant</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Engineering - Integrator</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Engineering</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency (9%)</td>
<td>$6,485.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$143,731.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
** CLICK HERE To Check The UDOT Website For Most Recent Version of Order Form: http://www.udot.utah.gov/main/f?p=100:pg:5948602499120381198:::1:T,V:259,

<table>
<thead>
<tr>
<th>Project & Accounting Information</th>
<th>UDOT Contacts</th>
<th>Pickup & Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin #: 00000</td>
<td>R.E.</td>
<td>Notify: < Name ></td>
</tr>
<tr>
<td>Date:</td>
<td>Ph:</td>
<td>Ph:</td>
</tr>
<tr>
<td>Project #: S-0012(34)56</td>
<td>Email:</td>
<td>Email:</td>
</tr>
<tr>
<td>Project Name: < Name ></td>
<td>P.M. < Name ></td>
<td>Pickup: < Name ></td>
</tr>
<tr>
<td>Signal Location: < Location ></td>
<td>Ph:</td>
<td>Ph:</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>Email:</td>
</tr>
<tr>
<td>Unit (Org):</td>
<td>Special Orders: Powder Coat Finish Poles (Check The Box…)</td>
<td>Contractor:</td>
</tr>
<tr>
<td>Approp:</td>
<td>Color:</td>
<td>Ph:</td>
</tr>
<tr>
<td>Activity:</td>
<td></td>
<td>Email:</td>
</tr>
<tr>
<td>Function:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program # (CID)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIONAL ITEMS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop Ship Poles / Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** 100 Day Lead Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify When FULL Order Ready Only</td>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>Notify As Items Available (Check Either box)</td>
<td>Street:</td>
<td></td>
</tr>
<tr>
<td>Date Needed:</td>
<td>City / St</td>
<td></td>
</tr>
<tr>
<td>Designer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTES:

ORDER TOTAL: $64,437.75

ORDER INSTRUCTIONS:

1. Pricing shown on forms is from the current State Contract. Actual FINET pricing will be an average cost based on when the stock was ordered and the price at that time.
2. Quantities for rows shown in **GREEN** are populated automatically. If desired, these auto-calculated quantities may be over-written by the user.
3. Notification of the order being ready will be sent via Email to the person indicated above, and will reference the SRQ, PIN, and Project Name as shown above.
4. For any order which exceeds the "Reorder Threshold" value for an item, the user will be required to order that item directly from the vendor.
5. FOR STEEL ITEMS: (400) Series Comm-Codes are for Valmont, 30'-55' arms. (500) Series Comm-Codes are for Union Metal, 60'-80' arms.
6. **User is required to schedule pickup within 14 days of order fulfillment notification. If not done, the items will be returned to warehouse stock.
7. Commodity codes are only required for items actually being **stocked** in the warehouse. Contact Greg Palmer to arrange for new commodity codes.
8. Many items on the order forms have additional details as a **Cell-Comment**. Hold your mouse over the description cell to view these comments.
<table>
<thead>
<tr>
<th>Commodity Code</th>
<th>Description</th>
<th>Model #</th>
<th>Unit</th>
<th>Order Qty</th>
<th>CONTRACT Unit Price</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>55085000501</td>
<td>TYPE A MAST ARM SIGNAL POLE (30' TO 55')</td>
<td>--</td>
<td>EA</td>
<td>4</td>
<td>$3,335</td>
<td>$13,340.00</td>
</tr>
<tr>
<td>5508500408H</td>
<td>HARDWARE KIT, TYPE A POLE CAP (only if no lum-extension is being used)</td>
<td>--</td>
<td>EA</td>
<td>2</td>
<td>$38</td>
<td>$76.00</td>
</tr>
<tr>
<td>5508500501H</td>
<td>HARDWARE KIT, TYPE ADC SIGNAL POLE (2 kits required for DC arm)</td>
<td>--</td>
<td>EA</td>
<td>4</td>
<td>$138</td>
<td>$552.00</td>
</tr>
<tr>
<td>5508500412</td>
<td>35' CURVED MAST ARM</td>
<td>--</td>
<td>EA</td>
<td>1</td>
<td>$1,647</td>
<td>$1,647.00</td>
</tr>
<tr>
<td>5508500413</td>
<td>40' CURVED MAST ARM</td>
<td>--</td>
<td>EA</td>
<td>2</td>
<td>$1,780</td>
<td>$3,560.00</td>
</tr>
<tr>
<td>5508500414</td>
<td>45' CURVED MAST ARM</td>
<td>--</td>
<td>EA</td>
<td>1</td>
<td>$2,002</td>
<td>$2,002.00</td>
</tr>
<tr>
<td>5508500413H</td>
<td>HARDWARE KIT, 35'/40' CURVED MAST ARM</td>
<td>--</td>
<td>EA</td>
<td>3</td>
<td>$10</td>
<td>$30.00</td>
</tr>
<tr>
<td>5508500411H</td>
<td>HARDWARE KIT, 30'/45' CURVED MAST ARM</td>
<td>--</td>
<td>EA</td>
<td>1</td>
<td>$10</td>
<td>$10.00</td>
</tr>
<tr>
<td>55085000412H</td>
<td>5508500413H</td>
<td>--</td>
<td>EA</td>
<td>1</td>
<td>$10</td>
<td>$10.00</td>
</tr>
<tr>
<td>5508500413H</td>
<td>5508500414H</td>
<td>--</td>
<td>EA</td>
<td>1</td>
<td>$10</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

** STATE FURNISHED MATERIALS TOTAL:** $64,437.75
Submit completed forms for ATMS equipment to the ITS Project Manager for your Region.

<table>
<thead>
<tr>
<th>Commodity Code</th>
<th>Description</th>
<th>Model #</th>
<th>Unit</th>
<th>Order Qty</th>
<th>CONTRACT Unit Price</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>55081000621</td>
<td>SIEMENS (Ruggedcom) ETHERNET SWITCH, 7-UTP port, 2-SMF port, DIN Rail Mount</td>
<td>RS900-H-D-T2T2TX</td>
<td>EA</td>
<td>1</td>
<td>$750</td>
<td>$750.00</td>
</tr>
</tbody>
</table>

STATE FURNISHED MATERIALS TOTAL: $750.00