1. Use the current edition of AASHTO Policy on Geometric Design of Highways and Streets for design of roadway elements not shown on this standard drawing and tables.

2. Use the current edition of AASHTO Roadside Design Guide and STD DWG DD 17 for clear zone requirements. Clear zone may extend into cut or fill slopes.

3. Standards shown are minimum values. Exceeded if conditions permit.

4. Maintain a constant slope from the edge of the pavement to the outer edge of the clear zone in fill conditions. Maintain a constant slope from the edge of the pavement to the top of the granular borrow layer in cut conditions. Maintain a minimum of 10 feet vertical distance between the bottom of the granular borrow layer to the bottom of the cut slope. There may be cut foreslopes, opens, and backslopes in the clear zone.

5. Transition from flat to steeper cut and fill slopes in sufficient distance to provide a natural pleasing appearance.

6. Pavement thickness consists of hard surfacing, UBBC and granular borrow (if used).

7. Install surface ditch, optional when sheet flow drainage is tangent to cut slopes. Small surface ditch to natural drainage or roadway ditch. Provide other measures to prevent erosion on cut slopes if surface ditch is omitted. See STD DWG DD 5 for details.

8. See STD DWG DD 4 for typical details for section on curve and section on tangent. See STD DWG DD 2 for typical section on ditch flaring and berming slopes.

9. Use flat median where median is not of sufficient width to provide a depth of 1 foot below the pavement thickness. Reduce slope to 10 degrees less and pave the entire area.

10. Use a capacity analysis to determine the length of storage required for turn lane. Use a minimum length of 100 feet.

11. The slopes shown for cut and fill heights are suggested values. Slopes may deviate from these suggested values to meet project-specific requirements.

12. Range of superelevation is the paved width.

13. Use 2 percent minimum cross slopes.

14. Place adverse slope breaks at shoulder or lane lines.

15. Use 6 percent maximum algebraic differential for slope breaks between shoulder and lane lines.

16. Use 4 percent maximum algebraic differential for slope breaks between lane lines.

17. See Table 1 on STD DWG DD 3 for "Taper Length L."