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Advanced Air Mobility

How do we automate air.traffic control
for autonomous aircraft?

UAS Traffic Management (UTM)
for
Advanced Air Mobility (AAM)

A problem for government agencies
such as NASA, the FAA, and
Departments of Transportation (DOT)
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http://www.youtube.com/watch?v=kqGQBZiFu4Y&t=20
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Project Goals

1. The impact of configurations of virtual highways (lanes)
2. The impact of tactical contingency response on the lane system

3. Aninvestigation into trajectory anomaly detection within the

lane-based approach.
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NASA's Advanced Air Mobility National = GeoRq
Campaign

Advanced Air Mobility National Campaign [ f |w]in|[P]+]

Partners Developmental Test partners (NC-DT)
The developmental testing phase ended in 2021 after flights with Joby's air taxi vehicle. These activities were designed to allow
5-.: ) R 0 aircraft and airspace management service providers to demonstrate their systems with real-world operations and in simulated

situations. The goal of DT was to prepare for NC-1, which is slated to occur in 2022.

Developmental Flight Testing - Industry partner provided a vehicle to fly in the NC-DT and demonstrated key integrated
operational Urban Air Mobility or UAM scenarios.

+ Joby Aviation of Santa Cruz, California

Developmental Airspace Simulation - Industry partner tested its UAM traffic management services in NASA-designed airspace
simulations and demonstrated key integrated operational UAM scenarios.

+ AirMap, Inc. of Santa Monica, California

« AIRXOS, Part of GE Aviation, of Boston, Massachusetts
+ ANRA Technologies, Inc. of Chantilly, Virginia

+ ARINC Inc. of Cedar Rapids, lowa

« Auvision, Inc. of Santa Monica, California

oty 1) ) TR 5 o

Advanced Air Mobility, with its many vehicle concepts and potential uses in both local and intraregional applications, is shown in this illustration.

To integrate air taxis, cargo delivery aircraft, and other new vehicle concepts into the National Airspace System, NASA's Advanced « Ellis & Associates. Los Angeles. CA, a wholly-owned subsidiary of Lacuna Technologies, Palo AltO, CA
Air Mobility (AAM) National Campaign needs to partner with industry, state government, and other government agencies to be -

e +__GeoRq LLC of Holladay, Utah

The team also is closely working with the Federal Aviation Administration to provide testing data and determine which current « Metron Aviation, Inc. of Herndon, Virginia

aviation standards need to evolve. The ongoing effort aims to help integrate new aircraft into the skies.

+ OneSky Systems Inc. of Exton, Pennsylvania
+ Uber Technologies, Inc. of San Francisco, California

22 June 2022 Sacharny, Henderson, Liu 4



u SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH Air Mobility Trajectory Anomaly Detection and Operational Advancement

Strategic Deconfliction
The FAA/NASA method (and the current standard)
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Strategic Deconfliction

The FAA/NASA method (and the current standard)

[ wasted airspace [
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Solution
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Inspiration

N
Working Group Meetings with Bilit o G B MANNED AIRCRAFT
UDOT Aeronautics R BRI dl
- Raised questions about ,
airspace capacity and - AIRTAXI
infrastructure |
- Desire to restrict operations o R
over private property : (8 PRSI R eeRER E
- Dual-Altitude airspace s T s

deS|gn dlSCUSSGd 7 Urban Air Taxi Airspace
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Addressed by the Lane-Based Approach

FAA/NASA Lane-Based
Inefficient airspace usage Efficient airspace usage
Inefficient deconfliction Efficient deconfliction

R e pa i PR
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22 June 2022 Sacharny, Henderson, Liu 9



u SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH Air Mobility Trajectory Anomaly Detection and Operational Advancement

What are Lanes?

Lanes are edges in a directed graph
- Not restricted to straight lines
- Disjoint lanes separated by minimum
distance
- Either the in-degree or out-degree of every
vertex is less than two.

min.

separation

- * ® %

headway
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Strategic Deconfliction
The Lane-Based Approach

The basics:
1.  Choose a path through the system (Dijkstra, A*, etc.)
2. Request a launch time

Lane Simulation Time: 16.4849 of 214.9046
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Constructing Lanes
The Lane-Based Approach
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Constructing Lanes
The Lane-Based Approach

Air Mobility Trajectory Anomaly Detection and Operational Advancement
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Recommended maximum entry design speeds for roundabouts at various inter-
section site categories are provided in Exhibit 6-4.

Recommended Maximum

Site Category Entry Design Speed
Mini-Roundabout 25 km/h (15 mph)
Urban Compact 25km/h (15 mph)
Urban Single Lane 35km/m (20 mph)
Urban Double Lane 40km/ (25 mph)
Rural Single Lane 40 km/h (25 mph)
Rural Double Lane 50 km/h (30 mph)
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Constructing Lanes

Two-Altitude Lanes over San Francisco

@cesium
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Constructing Lanes
Single-Altitude Lane System

20”
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Constructing Lanes

Lane System in Dubai

File Edit n g Terminal Help
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Lane-Based Approach over Salt Lake

1.1x BT s g
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Aug 13 20.
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STRUCTURE AND COMPARIS

Tools for Analyzing Lane Systems and
Comparisons to the Current Approach
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Spatial Network Measures

Intersection Histogram (1000 flights)

4500

4000

The lane-based approach supports a static analysis
through spatial network measures more commonly
used to describe ground transportation systems.
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Spatial Network Measures

The lane-based approach supports a static analysis
through spatial network measures more commonly
used to describe ground transportation systems.
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How is UTM Behavior Measured?

- Failed Flights

- Number of flights that desire a schedule
but are denied due to space/time/safety
constraints

Dela
- ¥|ow much time between when a vehicle
}Nantshto launch and when it is allowed to
aunc

- Deconfliction Time
- How much time is required to plan a
trajectory
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UTM Comparison

27 combinations of UTM parameters tested, 10 simulation runs each, 4 hour sim time

Simulation Statistics (1000 Flights per Hour)

—— hd (speed; hd;, flexe) | speed; € (5,10,15).hd; € (5,10, 30), flexe € (0,300, 1800)

Individual Parameter Index (i,j,k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Parameter Combination Enumeration
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UTM Comparison

Failed flights count operations that could not be scheduled

Individual Parameter Index (i,j,k)

22 June 2022
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UTM Comparison

Mean delay

Simulation Statistics (1000 Flights per Hour)
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UTM Comparison

Mean Deconfliction Time (wall clock)

Simulation Statistics (1000 Flights per Hour)
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UTM Comparison

Low flex, low speed, high headway — more failed flights (less airspace capacity)
- FAA and SF most sensitive
- Many SF choke points (high betweenness centrality)

Structured airspace deconfliction time lower on average
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UAS Behaviors and UTM Policies
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Contingencies
UTM Policies (CPAD)

Table 1: Delays and Failures in Experimental Simulations

Algorithm 1: Closest Point of Approach tmaz __ Mj Smas|Wait Fly Done Fail Avg Speed Delays
: : 100 100 5 1 18 81 0 4.98 2

1 V active flight, f 2 12 8 0 4.98 2
2 if f enters a new lane g ﬁ gg 8 j'gg é
3 OR a neighboring flight has slowed 1 18 8 0 496 4
4 OR f has reduced speed on its own means 0.814.8 844 0 498 22
5 then call Deconflict_Pair for all flights in neighboring lanes 0AE (1) 1; g? g g'gi ;
6 if f has reduced speed 0 12 8 0 8.99 0
7 then f broadcasts this information. 0 6 9 0 8.99 0
0 11 88 1 8.98 0

3 s means 0.2 9.6 90 0.2 8.98 0.6
Deconflict Pair 200 200 5| 0 14 186 0 1.96 6
0 11 189 0 4.97 8

0 17 183 0 4.98 6

1 13 18 0 499 10

while conflict(f1,f2) 0 6 194 0 4.96 9
means 0.212.21876 0 4.97 8.6

reduce speed. s1. of 200 200 9] 0 7 193 0 8.96 4

peed, s1, of fi 1 6 193 0 897 2

i 0 8 192 0 8.97 4

if 51 < Spmin 0 7 193 0 8.98 3

. . 0 4 196 0 8.97 2

then ﬂlght fl fails means 0.2 641934 0 8.97 3
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Detecting Anomalies and Rogue Aircraft
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Lane-Based Trajectory Model

Trajectory Model Lane Point Samples

2200
2100

2000
1700 |
1600 |

1400 -
1300
4981

4979

4976 - -1.2451
4975 «1.2453

Lane Point Samples

22 June 2022

it
3
i
i
3
i
4N
it
§
3
5 7

12646

49778

Trajectory Modei Lane Direction Samples

2050 A
2000
1950, |
1900
1850, |
1800 _l_—"

N ATLAY -\
1750, | 4+ T\ A\ [ : Feg Ol

~nr

L4
\
|
-

49776

P e

\

49774
49772
4977

49768

49766
\ y 1 pass -124502
49764 ! . X 124508 124508 ~124504
agre2 ’ 120816 124514 124512 sl <107
124518

124522 ~12452

Lane Direction Samples

Sacharny, Henderson, Liu 30



u SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH Air Mobility Trajectory Anomaly Detection and Operational Advancement

Detecting Anomalies

Nominal vs. Anomalous Behavior or (NAB)
- A system for detecting, tracking, and Spatal Databeiss
. . . ) from Lane Sample Points
characterizing airspace traffic ¥
- Can detect rogue hObbyISt and Flight Direction Vectors at Points
conforming aircraft '
- Output can be fed into neural nets for
ifi i Lane Trajectory | .| SensorData
further classification [ e ] [ ) ]
I |
1 .
[ NAB ] RogueFlight) | ~ /Simulatedor
Measures Signatures Sensor-Based
| | Training Data
!
[ Nominal or Anomalous ]
Nominal vs Anomalous Behavior
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Nominal Trajectory Behavior

Trajectory Mode! Lane Direction Samples
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Anomalous Trajectory Behavior

60

Hobbyist Type I: Flies up from one place and makes a
few moves above the launch site, then eventually lands at
the same site.

Hobbyist Type II: Flies up from one place and makes a
few moves above the launch site, hovers after each move,
then eventually lands at the launch site. —

Hobbyist Type llI: Flies up in a circular motion to some
highest point then flies down in a circular motion to land.

Rogue Type I: Flies up over and down as for a delivery.

Lanes

Hobby Type |
Hobby Type Il
Hobby Type Il
Rogue Type |
Rogue Type Il

Rogue Type II: Flies up to a lane, flies along the lane to
the end, then flies to another lane (not necessarily
connected), and eventually flies down to land.
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Anomalous Trajectory Behavior

Distance Trajectory Measure
35 Distance from Lane Trajectory Measure 180 T L Y T
T T T T T 1] T
e vars10
———var=1
- var=0.1 thod i
30+ n
| 1

| = I

) y

T |

\v i

D >N,
0 100 200 300 400 500 600 700 800 900 1000

22 June 2022 Sacharny, Henderson, Liu 34



U SCHOOL OF COMPUTING
o THEUNIVERSITY OF UTAH Air Mobility Trajectory Anomaly Detection and Operational Advancement

Classifying Anomalies

Simple feed-forward

netWO rk CIaSSiﬁ Cation Of Best Validation Performance is 0.018194 at epoch 9 1€ T
H P rain L Training Classification | |
nominal/anomalous & i : e datat
Test =
o Best 08
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% 105+ 2 usl
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The Attack Landscape

Attacked Asset
Physical Cyber
Attack Type Physical Physical Attacks Cyber-Physical Attacks
- Sabotage of infrastructure - Radio signal jamming
- Physical weapons to disable UAS - Compromising unattended sensors
- Coercion of authorized persons keys EM radiation-based attack on security
Cyber Cyber-Physical Threats Cyber Attacks

- ADS-B/GNSS spoofing - Malware insertion
- Sensor data manipulation - Network traffic analysis
- Telemetry data/link manipulation - Data theft and corruption

- Identification spoofing

- Cryptanalysis

22 June 2022
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The Attack Landscape

Likelihood Level Quantification of Likelihood
Extremely Improbably Zero-day exploit available; multi-lateral staged attack; +$10M in cost
Improbable S1M-$10M in cost; complex mission planning with staff; bot herder, fleet of bots
Remote Multi-thousand to millions of dollars in cost; sophisticated malware, ransomware, phishing, etc.
Occasional Unsophisticated malware
Frequent Low cost or free; pay-for-hire
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Conclusion

Is the system for managing UAMs moving in this direction?

Airspace Structure Definition Service (ASDS)!
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Continuing/Future Work

Utah Advanced Air Mobility Simulator f Time: 0 of 4157.4349
(UAAMS) |
AFWERX Phase I <
- Multi-Domain Deconfliction 2
- Department of Defense 15
Applications i
Continuing Research 0:
- Incorporating Vehicle Models TR R S

2000 54000 0 1000 2000 3000 4000 5000 6000

- More Contingency Modeling
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Thank You
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